Abstract:
An electronic or opto-electronic device or a chemical sensor comprising: an interpenetrating network of a nanostructured high surface area to volume ratio film material and an organic/inorganic material forming a nanocomposite. The high surface area to volume film material is obtained onto an electrode substrate first, such that the nano-scale basic elements comprising this film material are embedded in a void matrix while having electrical connectivity with the electrode substrate. For example, the film material may comprise an array of nano-protrusions electrically connected to the electrode substrate and separated by a void matrix. The interpenetrating network is formed by introducing an appropriate organic/inorganic material into the void volume of the high surface area to volume film material. Further electrode(s) are defined onto the film or intra-void material to achieve a certain device. Charge separation, charge injection, charge storage, field effect devices, ohmic contacts, and chemical sensors are possible.
Abstract:
Silicon dioxide thin film have been deposited at temperatures from 25null C. to 250null C. by plasma enhanced chemical vapor deposition (PECVD) using tetramethylsilane (TMS) as the silicon containing precursor. At these temperatures, the PETMS oxide films have been found to exhibit adjustable stress and adjustable conformality. Post deposition annealing in forming gas at or below the deposition temperatures has been shown to be very effective in improving the PETMS oxide properties while preserving the low temperature aspect of the PETMS oxides.
Abstract:
There is disclosed a method providing micro-scale devices, nano-scale devices, or devices having both nano-scale and micro-scale features. The method of the invention comprises fluidic assembly and various novel devices produced thereby. A variety of nanofluidic and molecular electronic type devices and structures having applications such as filtering and genetic sequencing are provided by the invention
Abstract:
The invention relates to methods for preparing a removable system on a mother substrate. The method deposits a high surface to volume sacrificial layer on a mother substrate and stabilizes the sacrificial layer by a) removing volatile chemical species in and on the sacrificial layer and/or b) modifying the surface of the layer. The method coats over the sacrificial layer with a capping medium. A system is the fabricated on the capping medium. The method provides through holes to access the sacrificial layer. The method may also apply a top layer onto the system to form a covered system. The invention also includes the step of removing the sacrificial layer to release the system from the mother substrate. Methods of the invention also include selectively removing a portion of the system and capping layers to form void regions defining an array of islands composed of device, structure, or system and capping layer regions, and optionally filling the island-defining void region with a sacrificial material. In such methods the sacrificial material and the high surface to volume sacrificial layer are removed to release the system from the mother substrate. Methods of the invention also include applying a layer to the capping material side of the released system to form a configuration wherein the system is substantially within a bending-stress reduced neutral plane. The systems fabricated according to the invention may be placed on a wide variety of suitable substrates, including flexible substrates.
Abstract:
There is disclosed an apparatus for providing an ionized analyte for mass analysis by photon desorption comprising at least one layer for contacting an analyte, and a substrate on which said layer is deposited. Upon irradiation of said apparatus, said analyte desorbs and ionizes for analysis by mass spectrometry. The layer or layers of said apparatus comprise a continuous film, a discontinuous film or any combinations thereof.
Abstract:
There is disclosed a method of producing nano or micro-scale chemical reactor devices and novel devices produced by said method. The method of the invention uses deposited sacrificial layers to provide various channels and reservoirs of reactor devices. Reactor devices of the present invention are chemical reactor devices, electro-chemical reactor devices, or chemical/electro-chemical deivices. A fuel cell embodiment is disclosed.
Abstract:
A novel porous film is disclosed comprising a network of silicon columns in a continuous void which may be fabricated using high density plasma deposition at low temperatures, i.e., less than about 250 null C. This silicon film is a two-dimensional nano-sized array of rodlike columns. This void-column morphology can be controlled with deposition conditions and the porosity can be varied up to 90%. The simultaneous use of low temperature deposition and etching in the plasma approach utilized, allows for the unique opportunity of obtaining columnar structure, a continuous void, and polycrystalline column composition at the same time. Unique devices may be fabricated using this porous continuous film by plasma deposition of this film on a glass, metal foil, insulator or plastic substrates.
Abstract:
A metal-containing toner is electrostatically printed on a semiconductor surface. Subsequently, this surface is annealed to achieve certain material modifications selectively at the regions where the toner is applied. If the toner contains a crystallization-catalyst metal, such as, Pd, Ni, Pt, and Cr, and is printed on an amorphous semiconductor film, annealing results in conversion of the printed regions to polycrystalline. If the metal-containing toner is printed on a silicon surface (i.e., amorphous/poly-Si layer or Si wafer) the printed regions are selectively converted to a metal-silicide (with the sufficient amount of metal applied on these regions) upon annealing.