Abstract:
A pattern forming method includes forming a first film patterned in a line and space shape on an underlayer film, the line and space shape including lines and a space arranged therebetween, forming a second film to cover the first film, removing the second film to form the second film on a side surface of the first film in a line shape, forming a third film to cover the first film and the second film, removing the third film formed on the first film and the second film to form the third film on a side surface of the second film, and converting the third film after removing the third film formed on the first film and the second film, wherein the third film is comprised of an organic metal compound, the organic metal compound having characteristic to increase etching tolerance when the organic metal compound undergoes a predetermined process.
Abstract:
There is provided a semiconductor device manufacturing method, including: a film forming process in which, by supplying a solution for modifying a surface layer of a resist to a target object having a resist pattern and allowing the solution to infiltrate into the resist, a film having elasticity and having no compatibility with the resist is formed in the surface layer of the resist; and a heating process in which the target object having the film formed thereon is heated.
Abstract:
There is provided a semiconductor device manufacturing method, including: a film forming process in which, by supplying a solution for modifying a surface layer of a resist to a target object having a resist pattern and allowing the solution to infiltrate into the resist, a film having elasticity and having no compatibility with the resist is formed in the surface layer of the resist; and a heating process in which the target object having the film formed thereon is heated.
Abstract:
Provided is a pattern forming method which includes forming fine lines and spaces in a thin film on a substrate; forming a first pattern which is a reverse pattern of a trench pattern for forming wiring by cutting the lines; and forming a second pattern which will become the trench pattern by reversing the first pattern.
Abstract:
The present disclosure appropriately shortens a processing step for processing a substrate in which a silicon layer and a silicon germanium layer are alternatively laminated. The present disclosure provides a substrate processing method of processing the substrate in which the silicon layer and the silicon germanium layer are alternatively laminated, which includes forming an oxide film by selectively modifying a surface layer of an exposed surface of the silicon germanium layer by using a processing gas including fluorine and oxygen and converted into plasma.
Abstract:
A substrate processing method includes forming a metal oxide resist film on a substrate including an underlayer; forming a pattern in the metal oxide resist film; modifying the metal oxide resist film in which the pattern has been formed; and etching the underlayer by using the modified metal oxide resist film as a mask.
Abstract:
Disclosed is a semiconductor device manufacturing method that manufactures a semiconductor device having a resist pattern which is excellent in roughness property and line width property. The method includes forming a film which is elastic and incompatible with a resist patterned on an object to be processed to cover the surface of the resist, and heating the object to be processed formed with the film.
Abstract:
A phase change memory includes an insulating layer on a substrate, an electrode layer having one pole and an electrode layer having another pole within the insulating layer, an opening portion whose lower portion on an upper portion of the insulating layer is substantially square or substantially rectangular, a phase change portion formed substantially parallel to a surface of the substrate along the respective sides of the lower portion of the opening portion, and two connection electrodes having a pole and connected to the phase change portion at two opposing corners of the lower portion of the opening portion connecting a diode portion connected to the electrode layer having one pole and the phase change portion, and two connection electrodes having another pole and connected to the phase change portion at the other two opposing corners connecting the phase change portion and the electrode layer having another pole.
Abstract:
A pattern forming method includes forming a pattern forming material film on a substrate as an etching target film, the pattern forming material film having an exposing section that has porosity upon exposure and a non-exposing section, patterning and exposing the pattern forming material film for the exposing section to have the porosity, selectively infiltrating a filling material into voids of the exposing section to reinforce the exposing section, and removing the non-exposing section of the pattern forming material film by dry etching to form a predetermined pattern.