摘要:
Aspects of the present disclosure generally relate to a microelectronic package including a plurality of through vias having walls in a glass interposer having a top portion and a bottom portion. The microelectric package may also include a stress relief barrier on at least a portion of the top and bottom portions of the glass interposer. The microelectric package may further include a metallization seed layer on at least a portion of the stress relief layer and a conductor on at least a portion of the metallization seed layer. The conductor extends through at least a portion of the plurality of the through vias, forming a plurality of metalized through package vias. At least a portion of the through vias are filled with the stress relief layer or the metallization seed layer.
摘要:
The present invention generally relates to the use of glass as the interposer material with the surface of the interposer and/or the walls of through vias in being coated by a stress relief barrier that provides thermal expansion and contraction stress relief and better metallization capabilities. The present invention discloses ways in that a stress relief barrier can be used to reduce the effects of stress caused by the different CTEs while also, in some applications, acting as an adhesion promoter between the metallization and the interposer. The stress relief barrier acts to absorb some of the stress caused by the different CTEs and promotes better adhesion for the conductive metal layer, thus helping to increase reliability while also providing for smaller designs.
摘要:
Provided are semiconductor packages comprising at least one thin-film capacitor attached to a printed wiring board core through build-up layers, wherein a first electrode of the thin-film capacitor comprises a thin nickel foil, a second electrode of the thin-film capacitor comprises a copper electrode, and a copper layer is formed on the nickel foil. The interconnections between the thin-film capacitor and the semiconductor device provide a low inductance path to transfer charge to and from the semiconductor device. Also provided are methods for fabricating such semiconductor packages.
摘要:
Provided are semiconductor packages comprising at least one thin-film capacitor attached to a printed wiring board core through build-up layers, wherein a first electrode of the thin-film capacitor comprises a thin nickel foil, a second electrode comprises a copper electrode, and a copper layer is formed on the nickel foil. The interconnections between the thin-film capacitor and the semiconductor device provide a low inductance path to transfer charge to and from the semiconductor device. Also provided are methods for fabricating such semiconductor packages.
摘要:
The various embodiments of the present invention provide a novel chip-last embedded structure, wherein an IC is embedded within a one to two metal layer substrate. The various embodiments of the present invention are comparable to other two-dimensional and three-dimensional WLFO packages of the prior art as the embodiments have similar package thicknesses and X-Y form factors, short interconnect lengths, fine-pitch interconnects to chip I/Os, a reduced layer count for re-distribution of chip I/O pads to ball grid arrays (BGA) or land grid arrays (LGA), and improved thermal management options.
摘要:
Provided are semiconductor packages comprising at least one thin-film capacitor attached to a printed wiring board core through build-up layers, wherein a first electrode of the thin-film capacitor comprises a thin nickel foil, a second electrode of the thin-film capacitor comprises a copper electrode, and a copper layer is formed on the nickel foil. The interconnections between the thin-film capacitor and the semiconductor device provide a low inductance path to transfer charge to and from the semiconductor device. Also provided are methods for fabricating such semiconductor packages.
摘要:
The various embodiments of the present invention provide a low cost, low electrical loss, and low stress panel-based silicon interposer with TPVs. The interposer of the present invention has a thickness of about 100 microns to 200 microns and such thickness is achieved without utilizing a carrier and further wherein no grinding, bonding, or debonding methods are utilized, therefore distinguishing the interposer of the present invention from prior art embodiments.
摘要:
Disclosed are guided optical devices comprising capped polymer ridged waveguides and methods of fabrication. An exemplary waveguide has a core with a cap (CapClad), bottom cladding and side cladding. The core is patterned together with cap to form the waveguide. The cap protects the core during processing after the core is coated and dried, and the cap layer is coated. Dust particles, contamination, mechanical damage, and process-induced defects on the top surface of the core are eliminated so that waveguide loss is minimized. Propagation loss measurements for reduced-to-practice embodiments have shown a 20% improvement of the capped waveguide over existing waveguides. The manufacturing yield of optical polymer waveguides and waveguide-based polymer devices is expected to be increase.