摘要:
The various embodiments of the present invention provide fine pitch, chip-to-substrate interconnect assemblies, as well as methods of making and using the assemblies. The assemblies generally include a semiconductor having a die pad and a bump disposed thereon and a substrate having a substrate pad disposed thereon. The bump is configured to electrically interconnect at least a portion of the semiconductor with at least a portion of the substrate when the bump is contacted with the substrate pad. In addition, when the bump is contacted to the substrate pad, at least a portion of the bump and at least a portion of the substrate pad are deformed so as to create a non-metallurgical bond therebetween.
摘要:
The various embodiments of the present invention provide a novel chip-last embedded structure, wherein an IC is embedded within a one to two metal layer substrate. The various embodiments of the present invention are comparable to other two-dimensional and three-dimensional WLFO packages of the prior art as the embodiments have similar package thicknesses and X-Y form factors, short interconnect lengths, fine-pitch interconnects to chip I/Os, a reduced layer count for re-distribution of chip I/O pads to ball grid arrays (BGA) or land grid arrays (LGA), and improved thermal management options.
摘要:
The various embodiments of the present invention provide fine pitch, chip-to-substrate interconnect assemblies, as well as methods of making and using the assemblies. The assemblies generally include a semiconductor having a die pad and a bump disposed thereon and a substrate having a substrate pad disposed thereon. The bump is configured to electrically interconnect at least a portion of the semiconductor with at least a portion of the substrate when the bump is contacted with the substrate pad. In addition, when the bump is contacted to the substrate pad, at least a portion of the bump and at least a portion of the substrate pad are deformed so as to create a non-metallurgical bond therebetween.
摘要:
The various embodiments of the present invention provide a novel chip-last embedded structure, wherein an IC is embedded within a one to two metal layer substrate. The various embodiments of the present invention are comparable to other two-dimensional and three-dimensional WLFO packages of the prior art as the embodiments have similar package thicknesses and X-Y form factors, short interconnect lengths, fine-pitch interconnects to chip I/Os, a reduced layer count for re-distribution of chip I/O pads to ball grid arrays (BGA) or land grid arrays (LGA), and improved thermal management options.
摘要:
The various embodiments of the present invention provide a stress-relieving, second-level interconnect structure that is low-cost and accommodates TCE mismatch between low-TCE packages and PCBs. The various embodiments of the interconnect structure are reworkable and can be scaled to pitches from about 1 millimeter (mm) to about 150 micrometers (μm). The interconnect structure comprises at least a first pad, a supporting pillar, and a solder bump, wherein the first pad and supporting pillar are operative to absorb substantially all plastic strain, therefore enhancing compliance between the two electronic components. The versatility, scalability, and stress-relieving properties of the interconnect structure of the present invention make it a desirable structure to utilize in current two-dimensional and ever-evolving three-dimensional IC structures.
摘要:
The various embodiments of the present invention provide a stress-relieving, second-level interconnect structure that is low-cost and accommodates TCE mismatch between low-TCE packages and PCBs. The various embodiments of the interconnect structure are reworkable and can be scaled to pitches from about 1 millimeter (mm) to about 150 micrometers (μm). The interconnect structure comprises a dielectric body element and at least one interconnection array that provides a conductive path between two electronic components. Each interconnection array comprises a plurality of wires that provide both conductivity and compliance to the overall interconnect structure. The versatility and scalability of the interconnect structure of the present invention make it a desirable structure to utilize in current two-dimensional and ever-evolving three-dimensional IC structures.
摘要:
Provided is a stress-relieving, second-level interconnect structure that is low-cost and accommodates thermal coefficient of expansion (TCE) mismatch between low-TCE packages and printed circuit boards (PCBs). The interconnect structure comprises at least a first pad, a supporting pillar, and a solder bump, wherein the first pad and supporting pillar are operative to absorb substantially all plastic strain, thereby enhancing compliance between the two electronic components.
摘要:
The various embodiments of the present invention provide a stress-relieving, second-level interconnect structure that is low-cost and accommodates TCE mismatch between low-TCE packages and PCBs. The various embodiments of the interconnect structure are reworkable and can be scaled to pitches from about 1 millimeter (mm) to about 150 micrometers (μm). The interconnect structure comprises a dielectric body element and at least one interconnection array that provides a conductive path between two electronic components. Each interconnection array comprises a plurality of wires that provide both conductivity and compliance to the overall interconnect structure. The versatility and scalability of the interconnect structure of the present invention make it a desirable structure to utilize in current two-dimensional and ever-evolving three-dimensional IC structures.