摘要:
An under-bump-metallurgy layer is provided. The under-bump-metallurgy layer is formed over the contact pad of a chip and a welding lump is formed over the under-ball-metallurgy layer. The under-bump-metallurgy layer comprises an adhesion layer, a barrier layer and a wettable layer. The adhesion layer is directly formed over the contact pad. The barrier layer made from a material such as nickel-vanadium alloy is formed over the adhesion layer. The wettable layer made from a material such as copper is formed over the barrier layer. The wettable layer has an overall thickness that ranges from about 3 μm to about 8 μm.
摘要:
An under-ball-metallurgy layer between a bonding pad on a chip and a solder bump made with tin-based material is provided. The under-ball-metallurgy layer at least includes an adhesion layer over the bonding pad, a nickel-vanadium layer over the adhesion layer, a wettable layer over the nickel-vanadium layer and a barrier layer over the wettable layer. The barrier layer prevents the penetration of nickel atoms from the nickel-vanadium layer and reacts with tin within the solder bump to form inter-metallic compound. This invention also provides an alternative under-ball-metallurgy layer that at least includes an adhesion layer over the bonding pad, a wettable layer over the adhesion layer and a nickel-vanadium layer over the wettable layer. The nickel within the nickel-vanadium layer may react with tin within the solder bump to form an inter-metallic compound.
摘要:
A bump structure on a contact pad and a fabricating process thereof. The bump comprises an under-ball-metallurgy layer, a bonding mass and a welding lump. The under-ball-metallurgy layer is formed over the contact pad and the bonding mass is formed over the under-ball-metallurgy layer by conducting a pressure bonding process. The bonding mass having a thickness between 4 to 10 μm is made from a material such as copper. The welding lump is formed over the bonding mass such that a sidewall of the bonding mass is also enclosed.
摘要:
A bump structure on a contact pad and a fabricating process thereof. The bump comprises an under-ball-metallurgy layer, a bonding mass and a welding lump. The under-ball-metallurgy layer is formed over the contact pad and the bonding mass is formed over the under-ball-metallurgy layer by conducting a pressure bonding process. The bonding mass having a thickness between 4 to 10 μm is made from a material such as copper. The welding lump is formed over the bonding mass such that a sidewall of the bonding mass is also enclosed.
摘要:
A solder paste for fabricating bumps includes a flux and metallic alloy powder. The metallic alloy powder includes a plurality of low eutectic metallic alloy granules, and the size of these metallic alloy granules is 20-60 &mgr;m and the average size of the metallic granules is 35 &mgr;m to 45 &mgr;m.
摘要:
The present invention provides a bump fabrication process. After forming an under bump metallurgy (UBM) layer and bumps in sequence over the substrate, the under bump metallurgy layer that is not covered by the bumps is etched with an etchant. The etchant mainly comprises sulfuric acid and de-ionized water. The etchant can etch the nickel-vanadium layer of the UBM layer without damaging the bumps.
摘要:
A semiconductor device with a capability can prevent a burnt fuse pad from re-electrical connection, wherein the semiconductor device includes a bump pad and a fuse pad over a wafer. The fuse pad includes the burnt fuse pad having a gap for electrical isolation. The semiconductor device comprises a dielectric layer, disposed substantially above the burnt fuse pad and filling the gap, and a bump structure, disposed on the bump pad. The foregoing semiconductor device can further comprise a passivation layer, which exposes the bump pad and a portion of the burnt fuse pad. Wherein, the dielectric layer is over the passivation layer, covers the exposed portion of the burnt fuse pad and fills the gap.
摘要:
A wafer bump fabrication process is provided in the present invention. A wafer with multiple bonding pads and a passivation layer, which exposes the bonding pads, is provided. The surface of each bonding pad has an under bump metallurgy layer. A patterned photoresist layer with a plurality of opening is formed which openings expose the under bump metallurgy layer. Afterwards a curing process is performed to cure the patterned photoresist layer. Following a solder paste fill-in process is performed to fill a solder paste into the openings. A reflow process is performed to form bumps from the solder paste in the openings. The patterned photoresist layer is removed.
摘要:
A lead-free solder bump fabrication process for producing a plurality of lead-free solder bumps over a wafer is provided. The lead-free solder bump fabrication process includes forming a lead-free pre-formed solder bump over each bonding pad on the wafer and then forming a patterned solder mask layer over the active surface of the wafer. The openings in the solder mask layer expose the respective lead-free pre-formed solder bumps on the wafer. Thereafter, lead-free solder material is deposited into the opening. The material composition of the lead-free solder material differs from the material composition of the lead-free pre-formed solder bump. A reflow process is conducted so that the lead-free pre-formed solder bump fuses with the lead-free solder material to form a lead-free solder bump. Finally, the solder mask layer is removed.
摘要:
A method of modifying the tin to lead ratio of a tin-lead bump forms a patterned solder mask over a substrate that comprises a first tin-lead bump formed thereon, the patterned solder mask having an opening that exposes the tin-lead bump. A solder material including tin and lead is filled in the opening of the solder mask over the first tin-lead bump. The solder material has a tin to lead ratio that differs from that of the first tin-lead bump. The solder material is reflowed to fuse with the first tin-lead bump, which forms a second tin-lead bump. The tin to lead ratio of the second tin-lead bump is thereby different from that of the first tin-lead bump.