Abstract:
A key generator including a first access circuit, a first calculating circuit and a first certification circuit is provided. The first access circuit writes first predetermined data to a first resistive memory cell during a write period and reads a first current passing through the first resistive memory cell after a randomization process. The first calculating circuit calculates the first current to generate a first calculation result. The first certification circuit generates a first password according to the first calculation result.
Abstract:
Provided is a resistive random access memory including a first electrode layer, a second electrode layer, and a variable resistance layer disposed between the first electrode layer and the second electrode layer, wherein the second electrode layer includes a first sublayer, a second sublayer, and a conductive metal oxynitride layer disposed between the first sublayer and the second sublayer.
Abstract:
A memory device includes: a resistive switching layer, a conductive pillar, a barrier layer, a word line, a plurality of resistive layers, and a plurality of bit lines. The resistive switching layer is shaped as a cup and has an inner surface to define an opening. The conductive pillar is disposed in the opening. The barrier layer is disposed between the resistive switching layer and the conductive pillar. The word line is electrically connected to the conductive pillar. The resistive layers are respectively distributed on an outer surface of the resistive switching layer. The bit lines are electrically connected to the resistive layers, respectively.
Abstract:
A writing method for a resistive memory apparatus is provided. In the method, logic data is received, and a corresponding selection memory cell is selected. A logic level of the logic data is determined. When the logic data is at a first logic level, a RESET pulse is provided to the selection memory cell and then a SET pulse smaller than a reference write current and having a near-rectangular pulse width is provided to the selection memory cell during a writing period. When the logic data is at a second logic level, the RESET pulse is provided to the selection memory cell and then a SET pulse larger than the reference write current and having the near-rectangular pulse width is provided to the selection memory cell during the writing period.
Abstract:
A writing method for a resistive memory apparatus is provided. In the method, logic data is received, and a corresponding selection memory cell is selected. A logic level of the logic data is determined. When the logic data is at a first logic level, a RESET pulse is provided to the selection memory cell and then a SET pulse smaller than a reference write current and having a near-rectangular pulse width is provided to the selection memory cell during a writing period. When the logic data is at a second logic level, the RESET pulse is provided to the selection memory cell and then a SET pulse larger than the reference write current and having the near-rectangular pulse width is provided to the selection memory cell during the writing period.
Abstract:
A resistive memory and a repairing method of the resistive memory are provided. Steps of the repairing method includes: operating a plurality of set-reset cycles on the resistive memory; detecting whether the resistive memory encounters an over-set issue after the set-reset cycles are operated; if the resistive memory encounters the over-set issue, executing an enhanced reset programming on the resistive memory. Here, the enhanced reset programming is executed by applying an enhanced reset voltage on the resistive memory during an enhanced reset time period. A product of the enhanced reset voltage and the enhanced reset time period is larger than a product of a reset voltage and a reset time period.
Abstract:
A resistive random access memory is provided. The resistive random access memory includes a bottom electrode over a substrate, a top electrode, a resistance-switching layer, an oxygen exchange layer, and a sidewall protective layer. The top electrode is disposed over the bottom electrode. The resistance-switching layer is disposed between the bottom electrode and the top electrode. The oxygen exchange layer is disposed between the resistance-switching layer and the top electrode. The sidewall protective layer containing metal or semiconductor is disposed at sidewalls of the resistance-switching layer, and the sidewalls of the resistance-switching layer is doped with the metal or semiconductor from the sidewall protective layer.
Abstract:
A resistive random access memory is provided. The resistive random access memory includes a bottom electrode, a top electrode, a resistance-switching layer, an oxygen exchange layer, and a sidewall protective layer. The bottom electrode is disposed over a substrate. The top electrode is disposed over the bottom electrode. The resistance-switching layer is disposed between the bottom electrode and the top electrode. The oxygen exchange layer is disposed between the resistance-switching layer and the top electrode. The sidewall protective layer as an oxygen supply layer is at least disposed at sidewalls of the oxygen exchange layer.
Abstract:
The invention provides a memory device and a manufacturing method thereof. The memory device includes a substrate, a capacitor, a protection device, a first metal interconnect, and a second metal interconnect. The capacitor is located on the substrate of a first region. The protection device is located in the substrate of a second region. The capacitor includes a plurality of bottom electrodes, a top electrode, and a capacitor dielectric layer. The top electrode has a first portion and a second portion, wherein the second portion is extended to the second region. The capacitor dielectric layer is located between the bottom electrodes and the top electrode. The first metal interconnect is located between the capacitor and the substrate. The second metal interconnect is located between the second portion of the top electrode and the protection device. The top electrode is electrically connected to the protection device through the second metal interconnect.
Abstract:
A resistive memory apparatus and a reading method thereof are provided. In this method, two reading pulses are applied to a resistive memory cell, such that a first reading resistance and a second reading resistance of the resistive memory cell at different temperatures are sequentially obtained. Next, a resistive state of the second reading resistance is determined according to the reading resistances and the temperatures corresponding to the reading resistances. Thereafter, a logic level of storage data of the resistive memory cell is determined according to the resistive state of the second reading resistance.