摘要:
A gallium nitride-based semiconductor optical device is provided that includes an indium-containing gallium nitride-based semiconductor layer that exhibit low piezoelectric effect and high crystal quality. The gallium nitride-based semiconductor optical device 11a includes a GaN support base 13, a GaN-based semiconductor region 15, and well layers 19. A primary surface 13a tilts from a surface orthogonal to a reference axis that extends in a direction from one crystal axis of the m-axis and the a-axis of GaN toward the other crystal axis. The tilt angle AOFF is 0.05 degree or more to less than 15 degrees. The angle AOFF is equal to the angle defined by a vector VM and a vector VN. The inclination of the primary surface is shown by a typical m-plane SM and m-axis vector VM. The GaN-based semiconductor region 15 is provided on the primary surface 13a. In the well layers 19 in an active layer 17, both the m-plane and the a-plane of the well layers 19 tilt from a normal axis AN of the primary surface 13a. The indium content of the well layers 19 is 0.1 or more.
摘要:
A GaN substrate having a large diameter of two inches or more by which a semiconductor device such as a light emitting element with improved characteristics such as luminance efficiency, an operating life and the like can be obtained at low cost industrially, a substrate having an epitaxial layer formed on the GaN substrate, a semiconductor device, and a method of manufacturing the GaN substrate are provided. A GaN substrate has a main surface and contains a low-defect crystal region and a defect concentrated region adjacent to low-defect crystal region. Low-defect crystal region and defect concentrated region extend from the main surface to a back surface positioned on the opposite side of the main surface. A plane direction [0001] is inclined in an off-angle direction with respect to a normal vector of the main surface.
摘要:
A GaN substrate having a large diameter of two inches or more by which a semiconductor device such as a light emitting element with improved characteristics such as luminance efficiency, an operating life and the like can be obtained at low cost industrially, a substrate having an epitaxial layer formed on the GaN substrate, a semiconductor device, and a method of manufacturing the GaN substrate are provided. A GaN substrate has a main surface and contains a low-defect crystal region and a defect concentrated region adjacent to low-defect crystal region. Low-defect crystal region and defect concentrated region extend from the main surface to a back surface positioned on the opposite side of the main surface. A plane direction [0001] is inclined in an off-angle direction with respect to a normal vector of the main surface.
摘要:
An active layer 17 is provided so as to emit light having a light emission wavelength in the range of 440 to 550 nm. A first conduction type gallium nitride-based semiconductor region 13, the active layer 17, and a second conduction type gallium nitride-based semiconductor region 15 are disposed in a predetermined axis Ax direction. The active layer 17 includes a well layer composed of hexagonal InXGa1-XN (0.16≦X≦0.35, X: strained composition), and the indium composition X is represented by a strained composition. The a-plane of the hexagonal InXGa1-XN is aligned in the predetermined axis Ax direction. The thickness of the well layer is in the range of more than 2.5 nm to 10 nm. When the thickness of the well layer is set to 2.5 nm or more, a light emitting device having a light emission wavelength of 440 nm or more can be formed.
摘要:
An active layer 17 is provided so as to emit light having a light emission wavelength in the range of 440 to 550 nm. A first conduction type gallium nitride-based semiconductor region 13, the active layer 17, and a second conduction type gallium nitride-based semiconductor region 15 are disposed in a predetermined axis Ax direction. The active layer 17 includes a well layer composed of hexagonal InXGa1-XN (0.16≦X≦0.35, X: strained composition), and the indium composition X is represented by a strained composition. The a-plane of the hexagonal InXGa1-XN is aligned in the predetermined axis Ax direction. The thickness of the well layer is in the range of more than 2.5 nm to 10 nm. When the thickness of the well layer is set to 2.5 nm or more, a light emitting device having a light emission wavelength of 440 nm or more can be formed.
摘要:
An active layer (17) is provided so as to emit light having an emission wavelength in the 440 nm to 550 nm band. A first-conductivity-type gallium nitride semiconductor region (13), the active layer (17), and a second-conductivity-type gallium nitride semiconductor region (15) are arranged along a predetermined axis (Ax). The active layer (17) includes a well layer composed of hexagonal InxGa1-xN (0.16≦x≦0.4, x: strained composition), with the indium fraction x represented by the strained composition. The m-plane of the hexagonal InxGa1-xN is oriented along the predetermined axis (Ax). The well-layer thickness is between greater than 3 nm and less than or equal to 20 nm. Having the well-layer thickness be over 3 nm makes it possible to fabricate light-emitting devices having an emission wavelength of over 440 nm.
摘要翻译:提供有源层(17)以发射具有440nm至550nm波段的发射波长的光。 第一导电型氮化镓半导体区域(13),有源层(17)和第二导电型氮化镓半导体区域(15)沿预定轴线(Ax)布置。 活性层(17)包括由六方晶系In x Ga 1-x N(0.16 <= x <= 0.4,x:应变组成)构成的阱层,其中铟组分x由应变组合物表示。 六边形In x Ga 1-x N的m面沿预定轴线(Ax)取向。 阱层厚度大于3nm且小于或等于20nm。 具有超过3nm的阱层厚度使得可以制造发射波长超过440nm的发光器件。
摘要:
Affords a GaN substrate from which enhanced-emission-efficiency light-emitting and like semiconductor devices can be produced, an epi-substrate in which an epitaxial layer has been formed on the GaN substrate principal surface, a semiconductor device, and a method of manufacturing the GaN substrate. The GaN substrate is a substrate having a principal surface with respect to whose normal vector the [0001] plane orientation is inclined in two different off-axis directions.
摘要:
A group III nitride crystal substrate is provided in which a uniform distortion at a surface layer of the crystal substrate represented by a value of |d1 −d2 |/d2 obtained from a plane spacing d1 at the X-ray penetration depth of 0.3 μm and a plane spacing d2 at the X-ray penetration depth of 5 μm is equal to or lower than 1.9 ×10−3, and the main surface has a plane orientation inclined in the direction at an angle equal to or greater than 10° and equal to or smaller than 80° with respect to one of (0001) and (000-1) planes of the crystal substrate. A group III nitride crystal substrate suitable for manufacturing a light emitting device with a blue shift of an emission suppressed, an epilayer-containing group III nitride crystal substrate, a semiconductor device and a method of manufacturing the same can thereby be provided.
摘要:
A group III nitride crystal substrate is provided, wherein, a uniform distortion at a surface layer of the crystal substrate is equal to or lower than 1.7×10−3, and wherein a plane orientation of the main surface has an inclination angle equal to or greater than −10° and equal to or smaller than 10° in a [0001] direction with respect to a plane including a c axis of the crystal substrate. A group III nitride crystal substrate suitable for manufacturing a light emitting device with a blue shift of an emission suppressed, an epilayer-containing group III nitride crystal substrate, a semiconductor device and a method of manufacturing the same can thereby be provided.
摘要:
A group III nitride crystal substrate is provided wherein, a uniform distortion at a surface layer of the crystal substrate is equal to or lower than 1.9×10−3, and wherein the main surface has a plane orientation inclined in a direction at an angle equal to or greater than 10° and equal to or smaller than 81° with respect to one of (0001) and (000-1) planes of the crystal substrate. A group III nitride crystal substrate suitable for manufacturing a light emitting device with a blue shift of an emission suppressed, an epilayer-containing group III nitride crystal substrate, a semiconductor device and a method of manufacturing the same can thereby be provided.