Abstract:
An apparatus for substrate metallization from electrolyte is provided. The apparatus comprises: an immersion cell containing metal salt electrolyte; at least one electrode connecting to at least one power supply; an electrically conductive substrate holder holding at least one substrate to expose a conductive side of the substrate to face the at least one electrode; an oscillating actuator for oscillating the substrate holder with an amplitude and a frequency; at least one ultrasonic device with an operating frequency and an intensity, disposed in the metallization apparatus; at least one ultrasonic power generator connecting to the ultrasonic device; at least one inlet for metal slat electrolyte feeding; and at least one outlet for metal salt electrolyte draining.
Abstract:
The present invention discloses novel compositions and methods for enhancing cardiac differentiation efficiency of stem cells or promoting ventricular and atrial cardiomyocytes formation from stem cells. The present invention also discloses the atrial and ventricular cardiomyocytes formed from the stem cells, and the uses of the cardiomyocytes for repairing cardiac injuries and screening for new medicaments for treating cardiac injuries.
Abstract:
The present invention provides an apparatus and method for rapid and uniform thermal treatment of semiconductor workpieces in two closely arranged thermal treatment chambers with a retractable door between them. The retractable door moves in between two thermal treatment chambers during heating or cooling process, and additional heating and cooling sources are provided for double-side thermal treatment of the semiconductor workpiece.
Abstract:
A method for cleaning semiconductor substrate using ultra/mega sonic device comprising holding a semiconductor substrate by using a chuck, positioning a ultra/mega sonic device adjacent to the semiconductor substrate, injecting chemical liquid on the semiconductor substrate and gap between the semiconductor substrate and the ultra/mega sonic device, changing gap between the semiconductor substrate and the ultra/mega sonic device for each rotation of the chuck during the cleaning process by turn the semiconductor substrate or the ultra/mega sonic device clockwise or count clockwise.
Abstract:
An apparatus for cleaning and conditioning the surface of a semiconductor substrate such as wafer includes a rotatable chuck, a chamber, a rotatable tray for collecting cleaning solution with one or more drain outlets, multiple receptors for collecting multiple cleaning solutions, a first motor to drive chuck, and a second motor to drive the tray. The drain outlet in the tray can be positioned directly above its designated receptor located under the drain outlet. The cleaning solution collected by the tray can be guided into designated receptor. One characteristic of the apparatus is having a robust and precisely controlled cleaning solution recycle with minimum cross contamination.
Abstract:
To interpolate a value for a pixel, multiple patterns are selected. Each pattern is used to determine a pixel angle. One of the determined pixel angles is then selected based on the reliability of the pixel angles. The selected pixel angle can be selected based on its reliability irrespective of the reliability of other pixel angles. The selected pixel angle can then be used to interpolate a value for the target pixel. Dynamic thresholds can be computed for use in either determining a pixel angle for a given pattern, or to select the pixel angle from the available determined pixel angles.
Abstract:
A electrochemical deposition system which has a 3-D stacked architecture comprises a factory interface for receiving semiconductor wafers, a mainframe comprising a mainframe transfer robot and a plurality of wafer holder assemblies which disposed on the top thereof, a plurality of electroplating cells disposed within the mainframe, a plurality of cleaning cells disposed within the mainframe and located below the electroplating cells, a plurality of thermal treatment chambers disposed in between the mainframe and the factory interface, and a fluid distribution system fluidly connected to the electroplating cells and the cleaning cells, wherein the mainframe transfer robot transfers the semiconductor wafer from the factory interface and within the electroplating cells, the cleaning cells, and the thermal treatment chambers. As a result, the system of the present invention is expandable to accommodate newly-added processing units without overmuch increased footprint.
Abstract:
The present invention provides a plating apparatus with multiple anode zones and cathode zones. The electrolyte flow field within each zone is controlled individually with independent flow control devices. A gas bubble collector whose surface is made into pleated channels is implemented for gas removal by collecting small bubbles, coalescing them, and releasing the residual gas. A buffer zone built within the gas bubble collector further allows unstable microscopic bubbles to dissolve.
Abstract:
The present invention provides an apparatus and method for rapid and uniform thermal treatment of semiconductor workpieces in two closely arranged thermal treatment chambers with a retractable door between them. The retractable door moves in between two thermal treatment chambers during heating or cooling process, and additional heating and cooling sources are provided for double-side thermal treatment of the semiconductor workpiece.
Abstract:
Provided are a method and device for controlling scrolling of a document, the document has a marked section and is scrolling-displayed within a display area, and the method comprises detecting whether the document is scrolled to the marked section, and restricting the scrolling of the document when the document is scrolled to the marked section. The method and device can control the scrolling of the document according to contents of the document, so that the contents cannot be neglected due to quick scrolling of the document.