摘要:
The present invention provides a photoresist composition comprisinga resin which comprises a structural unit represented by the formula (I): wherein Q1 and Q2 independently represent a fluorine atom etc., U represents a C1-C20 divalent hydrocarbon group etc., X1 represents —O—CO— etc., and A+ represents an organic counter ion, and a compound represented by the formula (D′): wherein R51, R52, R53 and R54 independently represent a C1-C20 alkyl group etc., and A11 represents a C1-C36 saturated cyclic hydrocarbon group which may have one or more substituents and which may contain one or more heteroatoms.
摘要:
An accumulator device includes: an outer container with mutually overlapped outer films bonded air-tightly to each other at a bonding portion formed along respective outer peripheral edge portions; an electrode unit accommodated inside the outer container and including positive and negative electrode sheets stacked one on another with a separator disposed therebetween, the positive and negative electrode sheets each including a current collector on which an electrode layer is formed; positive and negative electrode terminals provided to protrude from inside the outer container to outside through the bonding portion; and an electrolytic solution injected in the outer container. The positive electrode terminal includes an aluminum terminal substrate and a nickel-plating coating formed on a surface of an outer end portion of the terminal substrate located outside the outer container; an inner edge of the nickel-plating coating is located within the bonding portion.
摘要:
A positive electrode system of an electric storage device includes first and second positive electrodes. The first and second positive electrodes include current collectors, and first and second positive-electrode mixture layers, respectively. The negative electrode system of the electric storage device has a negative electrode including a current collector and a negative-electrode mixture layer. The first positive electrode and the second positive electrode are arranged across the negative electrode. The first positive-electrode mixture layer and the second positive-electrode mixture layer are connected to each other, and of different types. Through-holes are formed in the current collector of the negative electrode arranged between the first positive-electrode mixture layer and the second positive-electrode mixture layer.
摘要:
A compounds represented by the Formula (I) or the Formula (I′). wherein Z1 and Z2 independently represent a hydrogen atom, a C1 to C12 alkyl group or a C3 to C12 cyclic saturated hydrocarbon group, provided that at least one of Z1 and Z2 represent a C1 to C12 alkyl group or a C3 to C12 cyclic saturated hydrocarbon group; rings Y1 and Y2 independently represents an optionally substituted C3 to C20 alicyclic hydrocarbon group; Q1 to Q4 and Q′1 to Q′4 independently represent a fluorine atom or a C1 to C6 perfluoroalkyl group; and m and n independently represent an integer of 0 to 5.
摘要:
An accumulator device includes: an outer container with mutually overlapped outer films bonded air-tightly to each other at a bonding portion formed along respective outer peripheral edge portions; an electrode unit accommodated inside the outer container and including positive and negative electrode sheets stacked one on another with a separator disposed therebetween, the positive and negative electrode sheets each including a current collector on which an electrode layer is formed; positive and negative electrode terminals provided to protrude from inside the outer container to outside through the bonding portion; and an electrolytic solution injected in the outer container. The positive electrode terminal includes an aluminum terminal substrate and a nickel-plating coating formed on a surface of an outer end portion of the terminal substrate located outside the outer container; an inner edge of the nickel-plating coating is located within the bonding portion.
摘要:
A lithium ion capacitor includes a positive electrode, a negative electrode, and a non-protonic organic solvent electrolytic solution of a lithium salt. A positive electrode active material is a material capable of reversibly doping a lithium ion and/or an anion. A negative electrode active material is a material capable of reversibly doping a lithium ion. The lithium ion is doped in advance to either one or both of the negative electrode and the positive electrode so that a positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V (relative to Li/Li+) or less when capacitance per unit weight of the positive electrode is C+(F/g), weight of the positive electrode active material is W+(g), capacitance per unit weight of negative electrode is C−(F/g), and weight of the negative electrode active material is W−(g), a value of (C−×W−)/(C+×W+) is 5 or more.
摘要:
An electrical storage device having a positive electrode, a negative electrode, a lithium electrode, and an electrolyte capable of transferring lithium ion, the lithium electrode is out of direct contact with the negative electrode, and lithium ion is supplied to the negative electrode by flowing a current between the lithium and negative electrode through an external circuit. A method of using the electrical storage device includes using the lithium electrode as a reference electrode, the positive electrode potential and negative electrode potential is measured, and the potential of the positive or negative electrode is controlled during charging or discharging. The potentials of the positive electrode and negative electrode are monitored to easily determine whether deterioration of the electrical storage device is caused by the positive or negative electrode. It is possible to control the device with the potential difference between the negative electrode and reference electrode, using the negative potential.
摘要:
A lithium ion capacitor includes a positive electrode made of a material capable of reversibly carrying either one or both of a lithium ion and an anion, a negative electrode made of a material capable of reversibly carrying a lithium ion, and an electrolytic solution made of a non-protonic organic solvent electrolytic solution of a lithium salt. A negative electrode active material is non-graphitizable carbon having a ratio of number of hydrogen atoms to number of carbon atoms of zero or more and less than 0.05. The lithium ion is doped in advance to either one or both of the negative electrode and the positive electrode so that a negative electrode potential when a cell is discharged to a voltage one half a charging voltage of the cell is 0.15 V or less relative to a lithium ion potential.
摘要:
The present invention provides a chemically amplified resist composition comprising: a resin (A) which contains no fluorine atom and a structural unit (a1) having an acid-labile group in a side chain, a resin (B) which contains a structural unit (b2) having a fluorine-containing group in a side chain and at least one structural unit selected from the group consisting of a structural unit (b1) having an acid-labile group, a structural unit (b3) having a hydroxyl group and a structural unit (b4) having a lactone structure in a side chain, and an acid generator, wherein the amount of the resin (B) is 2 parts by weight or less per 100 parts by weight of the resin (A).
摘要:
The invention has as its object the provision of a wound-type accumulator, by which arrangement of a lithium ion source is simplified, and the time required to inject an aprotic organic solvent electrolyte solution and the time required for predoping are shortened, and thus the assembly can be completed in a short period of time to achieve high productivity.The wound-type accumulator of the invention is equipped with a cylindrical wound electrode unit, which has belt-like positive electrode and negative electrode and configured by winding an electrode stack obtained by stacking the positive electrode and negative electrode through a separator from one end thereof, and an electrolytic solution, wherein the negative electrode and/or the positive electrode is doped with lithium ions by electrochemical contact of the negative electrode and/or the positive electrode with a lithium ion source, intra-positive electrode spaces are formed in the positive electrode, and at least one lithium ion source is provided in the intra-positive electrode space or at a position opposing to the intra-positive electrode space in the negative electrode in a state coming into no contact with the positive electrode.