摘要:
Hydrogen-producing assemblies, fuel cell systems including the same, methods of producing hydrogen gas, and methods of powering an energy-consuming device. Hydrogen-producing assemblies may include a monolithic body that defines at least a reforming conduit, and in some embodiments a plurality of reforming conduits, in which a feed stream is catalyzed into a reformate gas stream containing hydrogen gas, and a burner conduit, in which a fuel-air stream is combusted. The monolithic body is constructed to conduct heat generated by the exothermic reaction of the combustion from the burner conduit to the reformer conduit. In some hydrogen-producing assemblies, the monolithic body further defines a vaporizing conduit, in which liquid portions of the feed stream are vaporized prior to being delivered to the reformer conduit, and the monolithic body may be constructed to conduct heat from the burner conduit to the vaporizing conduit.
摘要:
A vertical GaN-based blue LED has an n-type layer comprising multiple conductive intervening layers. The n-type layer contains a plurality of periods. Each period of the n-type layer includes a gallium-nitride (GaN) sublayer and a thin conductive aluminum-gallium-nitride (AlGaN:Si) intervening sublayer. In one example, each GaN sublayer has a thickness substantially more than 100 nm and less than 1000 nm, and each AlGaN:Si intervening sublayer has a thickness less than 25 nm. The entire n-type layer is at least 2000 nm thick. The AlGaN:Si intervening layer provides compressive strain to the GaN sublayer thereby preventing cracking. After the epitaxial layers of the LED are formed, a conductive carrier is wafer bonded to the structure. The silicon substrate is then removed. Electrodes are added and the structure is singulated to form a finished LED device. Because the AlGaN:Si sublayers are conductive, the entire n-type layer can remain as part of the finished LED device.
摘要:
The present disclosure is directed to systems and methods for actively controlling the steam-to-carbon ratio in hydrogen-producing fuel processing systems that include a feedstock delivery system. The feedstock delivery system supplies a combined feedstock stream including steam and carbon-containing feedstock to a hydrogen-producing region, which produces a mixed gas stream including hydrogen gas as a majority component therefrom. The systems and methods may include measuring a thermodynamic property of a steam stream, a carbon-containing feedstock stream, and/or the combined feedstock stream and controlling the flow rate and/or pressure of a water stream, the steam stream, and/or the carbon-containing feedstock stream based on a desired steam-to-carbon ratio in the combined feedstock stream and/or a desired flow rate of the mixed gas stream and may include feedforward and/or feedback control strategies.
摘要:
A vertical GaN-based blue LED has an n-type GaN layer that was grown directly on Low Resistance Layer (LRL) that in turn was grown over a silicon substrate. In one example, the LRL is a low sheet resistance GaN/AlGaN superlattice having periods that are less than 300 nm thick. Growing the n-type GaN layer on the superlattice reduces lattice defect density in the n-type layer. After the epitaxial layers of the LED are formed, a conductive carrier is wafer bonded to the structure. The silicon substrate is then removed. Electrodes are added and the structure is singulated to form finished LED devices. In some examples, some or all of the LRL remains in the completed LED device such that the LRL also serves a current spreading function. In other examples, the LRL is entirely removed so that no portion of the LRL is present in the completed LED device.
摘要:
A strain release layer adjoining the active layer in a blue LED is bounded on the bottom by a first relatively-highly silicon-doped region and is also bounded on the top by a second relatively-highly silicon-doped region. The second relatively-highly silicon-doped region is a sublayer of the active layer of the LED. The first relatively-highly silicon-doped region is a sublayer of the N-type layer of the LED. The first relatively-highly silicon-doped region is also separated from the remainder of the N-type layer by an intervening sublayer that is only lightly doped with silicon. The silicon doping profile promotes current spreading and high output power (lumens/watt). The LED has a low reverse leakage current and a high ESD breakdown voltage. The strain release layer has a concentration of indium that is between 5×1019 atoms/cm3 and 5×102° atoms/cm3, and the first and second relatively-highly silicon-doped regions have silicon concentrations that exceed 1×1018 atoms/cm3.
摘要:
A method of making multi-level contacts. The method includes providing an in-process multilevel device including at least one device region and at least one contact region. The contact region includes a plurality of electrically conductive layers configured in a step pattern. The method also includes forming a conformal etch stop layer over the plurality of electrically conductive layers, forming a first electrically insulating layer over the etch stop layer, forming a conformal sacrificial layer over the first electrically insulating layer and forming a second electrically insulating layer over the sacrificial layer. The method also includes etching a plurality of contact openings through the etch stop layer, the first electrically insulating layer, the sacrificial layer and the second electrically insulating layer in the contact region to the plurality of electrically conductive layers.
摘要:
The present invention provides a method for establishing an inter-domain path that satisfies wavelength continuity constraint. The fPCE stores a virtual topology comprised by border nodes of all domains. The present invention uses parallel inter-domain path establishment method to decrease the influence from WCC. Compared with the sequential process way in prior art, it enhanced the resource utilization and decreased computation delay.
摘要:
A method for manufacturing a capacitor on an integrated circuit includes providing an inter-metal dielectric layer on a substrate, a bottom layer having a first and second portions, a first insulating layer having via plug openings on the bottom layer, and via plugs disposed in the via plug openings. The via plugs include a first and second via plugs and are electrically coupled to the first portion of the bottom layer. The method further includes providing a capacitor layer having a first barrier metal layer coupled to the first via plug. The capacitor layer also has a capacitor dielectric layer overlying the first barrier metal layer and a second barrier metal overlying the capacitor dielectric layer. The method further includes defining a first and second capacitor layer portions. The first capacitor layer portion has two opposite sides and spacers disposed on their surface.
摘要:
A high-power and high-efficiency light emitting device with emission wavelength (λpeak) ranging from 280 nm to 360 nm is fabricated. The new device structure uses non-polar or semi-polar AlInN and AlInGaN alloys grown on a non-polar or semi-polar bulk GaN substrate.
摘要:
The present disclosure is directed to systems and methods for actively controlling the steam-to-carbon ratio in hydrogen-producing fuel processing systems that include a feedstock delivery system. The feedstock delivery system supplies a combined feedstock stream including steam and carbon-containing feedstock to a hydrogen-producing region, which produces a mixed gas stream including hydrogen gas as a majority component therefrom. The systems and methods may include measuring a thermodynamic property of a steam stream, a carbon-containing feedstock stream, and/or the combined feedstock stream and controlling the flow rate and/or pressure of a water stream, the steam stream, and/or the carbon-containing feedstock stream based on a desired steam-to-carbon ratio in the combined feedstock stream and/or a desired flow rate of the mixed gas stream and may include feedforward and/or feedback control strategies.