Abstract:
A package structure includes a substrate, an insulator, a plurality of pads and a patterned circuit layer. The substrate includes a plurality of through holes. The insulator covers the substrate and is filled in the through hole. The conductive vias are located in the through holes and penetrate the insulator filled in the through holes. The pads are disposed on an upper surface and a lower surface of the insulator and electrically connected to the conductive vias. A bottom surface of each pad is lower than the top surface of the insulator. The patterned circuit layer is disposed on the top surface of the insulator and connected to the conductive vias and the pads. A bottom surface of the patterned circuit layer is lower than the top surface of the insulator.
Abstract:
A semiconductor structure includes an insulating layer, a plurality of stepped conductive vias and a patterned circuit layer. The insulating layer includes a top surface and a bottom surface opposite to the top surface. The stepped conductive vias are disposed at the insulating layer to electrically connect the top surface and the bottom surface. Each of the stepped conductive vias includes a head portion and a neck portion connected to the head portion. The head portion is disposed on the top surface, and an upper surface of the head portion is coplanar with the top surface. A minimum diameter of the head portion is greater than a maximum diameter of the neck portion. The patterned circuit layer is disposed on the top surface and electrically connected to the stepped conductive vias.
Abstract:
A package structure includes a substrate, an insulator, a plurality of pads and a patterned circuit layer. The substrate includes a plurality of through holes. The insulator covers the substrate and is filled in the through hole. The conductive vias are located in the through holes and penetrate the insulator filled in the through holes. The pads are disposed on an upper surface and a lower surface of the insulator and electrically connected to the conductive vias. A bottom surface of each pad is lower than the top surface of the insulator. The patterned circuit layer is disposed on the top surface of the insulator and connected to the conductive vias and the pads. A bottom surface of the patterned circuit layer is lower than the top surface of the insulator.
Abstract:
A semiconductor structure includes an insulating layer, a plurality of stepped conductive vias and a patterned circuit layer. The insulating layer includes a top surface and a bottom surface opposite to the top surface. The stepped conductive vias are disposed at the insulating layer to electrically connect the top surface and the bottom surface. Each of the stepped conductive vias includes a head portion and a neck portion connected to the head portion. The head portion is disposed on the top surface, and an upper surface of the head portion is coplanar with the top surface. A minimum diameter of the head portion is greater than a maximum diameter of the neck portion. The patterned circuit layer is disposed on the top surface and electrically connected to the stepped conductive vias.
Abstract:
A package structure includes a selective-electroplating epoxy compound, a first patterned circuit layer, second patterned circuit layers, metal studs, contact pads and conductive vias. The selective-electroplating epoxy compound includes cavities, a first surface and a second surface. The cavities disposed on the first surface in array arrangement. The selective-electroplating epoxy compound is formed by combining non-conductive metal complex. The metal studs are disposed in the cavities respectively and protruded from the first surface. The first patterned circuit layer is directly disposed on the first surface. The selective-electroplating epoxy compound exposes a top surface of the patterned circuit layer. The top surface is lower than or coplanar with the first surface. The second patterned circuit layers are directly disposed on the second surface. The conductive vias are disposed at the selective-electroplating epoxy compound to electrically connect the second patterned circuit layers to the corresponding metal studs.
Abstract:
A ceramic circuit board includes a substrate made of Al2O3 or AlN and having an exterior surface and a groove recessed from the exterior surface. The groove has a bottom surface provided with a roughness Ra of 1-20 μm, a plurality of crests and a plurality of troughs. The crests are located in an imaginary plane separated from the exterior surface at a distance of 1-100 μm. An electro-conductive wire is embedded in the groove and has a top surface flush with the exterior surface. An LED package module includes a ceramic circuit board having two embedded electro-conductive wires, two bonding pads respectively mounted on the top surfaces of the wires, and an LED chip having two contacts electrically connected with the bonding pads respectively. The electro-conductive wire is connected with the substrate firmly and made relatively thicker capable of carrying a relatively larger electric current.
Abstract translation:陶瓷电路板包括由Al 2 O 3或AlN制成并具有外表面和从外表面凹陷的凹槽的基底。 凹槽具有设置有1-20μm粗糙度Ra,多个波峰和多个槽的底表面。 波峰位于与外表面隔开的虚拟平面上,距离为1-100μm。 导电线嵌入槽中并具有与外表面齐平的顶表面。 LED封装模块包括具有两个嵌入式导电线的陶瓷电路板,分别安装在导线顶表面上的两个焊盘,以及分别与焊盘电连接的两个触点的LED芯片。 导电线牢固地与基板连接,并且能够承载相对较大电流的相对较厚。
Abstract:
A method of making a light-guiding module includes the steps of applying a layer of light guide material containing methyl methacrylate oligomers on a reflector, and polymerizing the methyl methacrylate oligomers of the light guide material at a temperature ranging from 60 to 65° C. for 2.5 to 3 hours to form a light guide plate containing polymethylmethacrylate and integrally combining the reflector. Since there is no any gap between the light guide plate and the reflector, the light-guiding module reduces light loss, and improves the luminous efficiency of the backlight unit in which the light-guiding module is used.
Abstract:
A package structure includes a lead frame, an insulator, a plurality of conductive vias, a patterned metal layer, and a chip. The lead frame includes a plurality of contacts. The insulator covers the lead frame. The conductive vias are disposed on the insulator and connected to the contacts. The patterned metal layer covers an outer surface of the insulator and includes a groove and a circuit portion. The circuit portion is connected to and covers the conductive vias and contacts. The groove surrounds the circuit portion such that the circuit portion is electrically insulated from the rest of the patterned metal layer. A surface of the insulator exposed by the groove is lower than the outer surface. The chip is disposed on the insulator and electrically connected to the circuit portion.
Abstract:
A package structure includes a lead frame, a selective-electroplating epoxy compound, conductive vias and a patterned circuit layer. The lead frame includes a metal stud array having metal studs. The selective-electroplating epoxy compound covers the metal stud array. The selective-electroplating epoxy compound includes non-conductive metal complex. The conductive vias are directly embedded in the selective electroplating epoxy compound to be respectively connected to the metal studs and extended to a top surface of the selective-electroplating epoxy compound. Each of the conductive vias includes a lower segment connected to the corresponding metal stud and an upper segment connected to the lower segment and extended to the top surface, and a smallest diameter of the upper segment is greater than a largest diameter of the lower segment. The patterned circuit layer is directly disposed on the top surface and electrically connected to the conductive vias.
Abstract:
A package structure includes a lead frame, an insulator, a plurality of conductive vias, a patterned metal layer, and a chip. The lead frame includes a plurality of contacts. The insulator covers the lead frame. The conductive vias are disposed on the insulator and connected to the contacts. The patterned metal layer covers an outer surface of the insulator and includes a groove and a circuit portion. The circuit portion is connected to and covers the conductive vias and contacts. The groove surrounds the circuit portion such that the circuit portion is electrically insulated from the rest of the patterned metal layer. A surface of the insulator exposed by the groove is lower than the outer surface. The chip is disposed on the insulator and electrically connected to the circuit portion.