Abstract:
Described herein are methods for separating one or more analytes present in a fluid sample. The methods involve passing the fluid through or into a microporous material, wherein the analytes are localized near the surface of the microporous material. Additional processing steps such as hybridization and amplification can be performed once the analyte is localized. In one method, once the analyte is localized, the analyte can be detected, counted, and correlated in order to determine the concentration of the analyte in the sample. In another method, the localized analyte is destabilized to make the localized analyte more accessible for chemical manipulation. Modified microporous materials and composite materials are also disclosed that can be used in any of the methods and articles described herein. The composite is composed of a microporous material and a pigment, wherein the pigment is incorporated in the microporous material. The pigments alter the optical properties of the microporous material, which enhances the detection of analyte once it is localized. Methods for making pigmented composites are also disclosed. In a further aspect, various kits and articles such as filtration devices containing any of the microporous materials described herein are provided.
Abstract:
A heated catalyst support device for a reactor including a reactor vessel containing a bed of catalyst particles. The device includes a permeable support plate having a channel extending therethrough, where the support plate is adapted to contact the bed of catalyst particles. The device further includes a heating element extending through the channel in the support plate. A method for starting up a water gas shift reactor is provided that includes applying heat to the bed of catalyst particles using the heating element, measuring a temperature in the bed of catalyst particles. and starting up the water gas shift reactor when the temperature exceeds a saturation temperature for a desired operating pressure.
Abstract:
Disclosed is a microsize driving device in which falling of track proteins from an arrangement of motor protein molecules arranged on a linear track groove provided on a substrate is suppressed and utilization of kinetic energy of track proteins as a driving energy is made possible by controlling the moving direction to a single direction. Namely, provided is a microsize driving device which comprises a substrate, an arrangement of motor protein molecules such as, for example, kinesin molecules deposited on the bottom of a linear track groove provided thereon and track proteins such as, for example, microtubules disposed thereon and is characterized in that the said linear track groove has side surfaces shaped in such a structure as to permit a linear movement of the track proteins moving in a certain specific direction but to inhibit the track proteins moving in the reverse direction thereto causing reversion for the movement in the above mentioned specific direction.
Abstract:
A precursor and method for filling a feature in a substrate. The method generally includes depositing a barrier layer, the barrier layer being formed from pentakis(dimethylamido)tantalum having less than about 5 ppm of chlorine. The method additionally may include depositing a seed layer over the barrier layer and depositing a conductive layer over the seed layer. The precursor generally includes pentakis(dimethylamido)tantalum having less than about 5 ppm of chlorine. The precursor is generated in a canister having a surrounding heating element configured to reduce formation of impurities.
Abstract:
A tube supporting device is described which in a preferred embodiment comprises ferrules (1) located on the tubes (2), brace means (3) connecting the ferrules (1) and cleats (7) connecting rows of tubes (2). The brace means (3) may be held in position by means of a retaining band (8) which itself is located in position by a stave (9). The support structure is capable of being assembled as the tube bundle is assembled.
Abstract:
A system of two fuel ampoules that can deliver a reactant by diffusion through one of the ampoule walls to the other, such that when said reactant enters the second ampoule, it reacts with another reactant in said second ampoule, making hydrogen gas as a product. Both ampoules are stored in a fuel impermeable container. These ampoules used with small low power fuel cells which need a steady controlled uniform delivery of vaporous fuel such hydrogen and alcohols. This fueling system provides a simple safe fuel interactive system for small hydrogen fuel cells that prevents inadvertent hydrogen production by any single ampoule being exposed to water or typical consumer environments.