摘要:
A semiconductor device is retained on a retaining section. A mask is set on the semiconductor device and has an opening at which part of the semiconductor device is exposed. An extruding section is moved by a first drive section over an opening in the mask and, during this movement, extrudes a fluidizing resin into the opening in the mask. A squeegee is moved by a second drive section over the opening in the mask to allow a movement of the fluidizing resin present over the opening which is extruded into the opening from an extruding section and a removal of any excessive resin from the plane of the opening.
摘要:
A method is provided for supporting the mechanical members of a micro-electronic substrate during the manufacture of the substrate into a micro-mechanical or micro-electromechanical device. The method provides supporting material that surrounds the various mechanical members of the micro-electronic substrate and stabilizes these mechanical members during manufacture. The method also facilitates precise photolithographic as well as other microfabrication techniques. Specifically, the method provides support material that surrounds the perimeter of the micro-electronic substrate and that has a surface that is coplanar with one surface of the micro-electronic substrate. Photoresist or other materials can then be deposited, such as by spinning, on the surface of the micro-electronic substrate such that the edges of the photoresist or other materials lie upon the supporting material. By placing the outer edges of the photoresist or other material on the surface of the support material, the surface of the micro-electronic substrate remains planar for subsequent photolithographic or other microfabrication procedures. An intermediate micro-electronic device assembly is also provided in which a mechanical member, such as a membrane, is supported by the supporting material.
摘要:
An encapsulated display device. The device includes a substrate, an environmentally sensitive display device adjacent to the substrate, and at least one first barrier stack adjacent to the environmentally sensitive display device. The barrier stack encapsulates the environmentally sensitive display device. It includes at least one first barrier layer and at least one first polymer layer. The encapsulated display device optionally includes at least one second barrier stack located between the substrate and the environmentally sensitive display device. The second barrier stack includes at least one second barrier layer and at least one second polymer layer. A method for making an encapsulated display device is also disclosed.
摘要:
This invention provides a method for making interdigitated optoelectronic devices in which the surfaces of the photonic devices, emitters and detectors, are protected from contaminants during processing through the use of multiple etch stop layers.
摘要:
Upon the manufacture of a non-leaded type semiconductor device having an encapsulater, and a gate cured resin and air vent cured resins which remain as a result of the exposure of leads and tub-suspension leads to a mounting surface of the encapsulater and the formation of the encapsulater, a groove through which a resin flows is not provided over the full circumference of a cavity defined in a mold die for forming the encapsulater. A gate and air vents are provided outside an area in which no groove is defined. The flow of the resin between the cavity and each of the gate and air vents is made through a gap or space defined between each of the adjacent leads and each tub-suspension lead. If the leads and the tub-suspension leads are cut at a groove-free place, then the occurrence of resin waste and a resin crack can be restrained because the gate cured resin and the air vent cured resins have their surfaces which are flat and level with the leads and the tub-suspension leads.
摘要:
A method for packaging semiconductor device assemblies. An assembly is formed which includes a semiconductor die, a tape positioned over the active surface of the die, and a substrate element positioned on an opposite side of the tape from the die. Bond pads of the die are exposed through a slot formed through the tape and an aligned opening formed through the substrate element facilitate the extension of intermediate conductive elements from the bond pads and through the slot and opening, to corresponding contact areas on the substrate element. One or both ends of the slot extend beyond an outer periphery of the die to facilitate introduction of an encapsulant material into a channel or receptacles defined by the slot, opening, and active surface of the semiconductor die. Prior to encapsulation, the side of the opening of the substrate element is sealed opposite the tape with a coverlay to contain the encapsulant material within the channel or receptacle. Assemblies and packages formed by the method are also disclosed.
摘要:
A hard layer of amorphous hydrogenated carbon (DLC) overlies a polymer film structure and a plurality of soft layers of DLC alternate with a plurality of hard layers of DLC over the barrier base to form a corrosion resistant structure. The polymer film structure and a circuit chip can be elements of a circuit module. The DLC and the polymer film structure can have vias extending to contact pads, and a pattern of electrical conductors can extend through the vias to the contact pads. In one embodiment the DLC forms a hermetic (and therefore corrosion resistant) seal over the polymer film structure.
摘要:
A molding die used for concurrently packaging semiconductor chips in a large piece of synthetic resin has a cavity rectangular in cross section and having two long peripheral lines and two short peripheral lines for accommodating a circuit panel where the semiconductor chips are mounted, melted synthetic resin is supplied through a gate extending along one of the long peripheral lines to the cavity so that the melted synthetic resin smoothly flows over the cavity, and the smooth flow prevents the molded product from voids and a wire weep.
摘要:
A process for protecting a MEMS device used in a UV illuminated application from damage due to a photochemical activation between the UV flux and package gas constituents, formed from the out-gassing of various lubricants and passivants put in the device package to prevent sticking of the MEMS device's moving parts. This process coats the exposed surfaces of the MEMS device and package's optical window surfaces with a metal-halide film to eliminate this photochemical activation and therefore significantly extend the reliability and lifetime of the MEMS device.
摘要:
A circuit is described which has a semiconductor component surrounded by a plastic housing and with which contact can be made via conductor tracks. Between each dividing surface of the conductor tracks and an area of the plastic housing surrounding the relevant dividing surface, as viewed in plan view of the dividing surface, a spacing is provided in each case.