Abstract:
Die vorliegende Erfindung betrifft eine Anordnung (10) zum Beschichten eines Substrats (12), umfassend eine Beschichtungskammer (18) und wenigstens zwei an jeweils gegenüberliegenden Seiten der Beschichtungskammer derart angeordnete Strahlungsöffnungen (20, 22) aufweist, dass ein Lichtstrahl (24) durch die Strahlungsöffnungen (20, 22) einen Beschichtungskegel (14) zwischen Verdampfungsbehälter (16) und Substrat (12) durchstrahlt. Wenigstens zwei Spiegelkammern (26, 28), sind jeweils außerhalb der Beschichtungskammer (18) angeordnet und weisen jeweils eine Öffnung (30, 32) auf, die mit einer Strahlungsöffnung (20, 22) verbunden ist. In jeder der Spiegelkammern ist ein Kammerspiegel (34, 36) derart ausgerichtet, dass der Lichtstrahl zwischen den in unterschiedlichen Spiegelkammern angeordneten Kammerspiegeln einkoppelbar ist. Wenigstens ein Kammerspiegel ist teildurchlässig. Wenigstens ein Detektor (44, 46, 48) detektiert den aus den Kammerspiegeln ausgekoppelten Lichtstrahl. Eine derartige Anordnung (10) erlaubt eine genaue Ermittlung der Dampfdichte in der Beschichtungskammer und damit eine genaue Ermittlung der Beschichtungsrate.
Abstract:
An apparatus and method for the evaporation and deposition of materials onto a substrate. A material hopper assembly may receive source material. An agitator mechanism may be controlled for urging or advancing forward the source material. A grinding mechanism may be controlled for grinding source material. A heating pot vessel may be heated to evaporate the source material. The evaporated source material may be deposited on a proximate substrate. The rate of the deposition may be controlled in part by the agitator mechanism and/or the grinding mechanism. Temperature zones in a heating pot vessel may be independently controlled to evaporate the source material. A reactor chamber may be heated to allow the evaporated source materials to interact. A heated mesh may be charged to accelerate particles of the evaporated source materials onto the substrate.
Abstract:
Eine Vorrichtung zum Aufdampfen eines Beschichtungsmaterials auf einem Substrat umfasst einen Dampfverteilungsraum (115) zum Aufnehmen einer Verdampfungsquelle, wobei der Dampfverteilungsraum einen Düsenabschnitt (117) aufweist, der eine längliche Form hat, die eine Länge und eine Breite hat, wobei die Länge (121) größer oder gleich einer Breite des zu beschichtenden Substrats ist, und wobei die Breite kleiner als die Länge ist, und wobei der Düsenabschnitt ferner eine Höhe (123) aufweist, um die der Düsenabschnitt von dem Dampfverteilungsraum hervorsteht, wobei die Höhe größer als die Breite ist.
Abstract:
A method and apparatus (10) are provided for determining the flux rate of a target material (30) at a substrate (28) in a sputtering system (10), using emission line measurements. The magnitude of at least one emission line from a target material (30) and at least one emission line from a plasma are measured. The magnitudes are then processed to determine the flux rate of the target material (30) at the substrate (28). If a multiple component target (30) is used, emission lines from each of the target components (30) are measured and individual flux rates are determined for each of the target components (30). In one embodiment, feedback means are provided for changing process conditions based on the measured flux rates.
Abstract:
An apparatus and method for the evaporation and deposition of materials onto a substrate. A material hopper assembly may receive source material. An agitator mechanism may be controlled for urging or advancing forward the source material. A grinding mechanism may be controlled for grinding source material. A heating pot vessel may be heated to evaporate the source material. The evaporated source material may be deposited on a proximate substrate. The rate of the deposition may be controlled in part by the agitator mechanism and/or the grinding mechanism. Temperature zones in a heating pot vessel may be independently controlled to evaporate the source material. A reactor chamber may be heated to allow the evaporated source materials to interact. A heated mesh may be charged to accelerate particles of the evaporated source materials onto the substrate.
Abstract:
A system for processing vapor. The system includes a vapor source for producing a vapor and an outlet conduit coupled to the vapor source for carrying the vapor from the vapor source. Downstream of the vapor source the outlet conduit separates into a vapor bypass conduit and a vapor feed conduit. The system further includes a first vapor control valve disposed in the bypass conduit, a second vapor control valve disposed in the feed conduit, a first vacuum chamber fluidically coupled to the bypass conduit, and a second vacuum chamber fluidically coupled to the feed conduit.
Abstract:
A high production rate plasma sputtering process for producing particles having a size of 10 μm or less is disclosed. The process causes ionization of at least a part of the sputtered target atoms and is performed at such parameters that the pick-up probability of ionized sputtered target atoms on the surface of grains is high.
Abstract:
Methods of forming metal-doped chalcogenide layers and devices containing such doped chalcogenide layers include using a plasma to induce diffusion of metal into a chalcogenide layer concurrently with metal deposition. The plasma contains at least one noble gas of low atomic weight, such as neon or helium. The plasma has a sputter yield sufficient to sputter a metal target and a UV component of its emitted spectrum sufficient to induce diffusion of the sputtered metal into the chalcogenide layer. Using such methods, a conductive layer can be formed on the doped chalcogenide layer (in situ. )In integrated circuit devices, such as non-volatile chalcogenide memory devices, doping of the chalcogenide layer concurrently with metal deposition and formation of a conductive layer (in situ )with the doping of the chalcogenide layer reduces contamination concerns and physical damage resulting from moving the device substrate from tool to tool, thus facilitating improved device reliability.a