Abstract:
The invention relates to a heat-generating electronic circuit board, comprising a board substrate (12) of electrically non-conducting material with at least one circuit pattern (14) formed thereon, on which semiconductors are mounted. The circuit pattern (14) has a section (B) with terminals (16) for contacts. The substrate is divided into a substrate portion (24) supporting semiconductors and a substrate portion (22) separated therefrom and supporting terminals (16) of the circuit pattern, said substrate portions being flexibly held together by the circuit pattern (18) therebetween. The invention also relates to a process for manufacturing such an electronic circuit board, whereby a score (20) is made on one side of the substrate along a portion thereof separating the terminal portion (22) from the semiconductor portion (24), whereafter the substrate is broken along the score and the substrate portions are pulled apart with the portions held at an angle to each other so that freed bridges (18) are formed in the circuit pattern, said bridges flexibly connecting the terminal substrate portion (22) with the semiconductor substrate portion (24).
Abstract:
Damit mehr Platz für weitere Schaltungselemente (Spulen, Kondensatoren) zur Verfügung steht und/oder die zur Abschirmung der Schaltungen notwendigen zusätzlichen Schaltungselemente untergebracht werden können, wird vorgeschlagen, die Metallisierungsbereiche in zumindest zwei Metallisierungsebenen übereinander anzuordnen, wobei der Trägerkörper (1) eine Oberfläche aufweist, auf der in einer ersten Metallisierungsebene versinterte Metallisierungsbereiche angeordnet sind, die elektronische Bauelemente tragen und/oder so strukturiert sind, dass sie Widerstände oder Spulen bilden und diese Metallisierungsbereiche zusammen mit den Bauelementen und/oder den gebildeten Widerständen oder Spulen von einer keramischen Platte (5) abgedeckt sind und optional auf der keramischen Platte weitere von diesen versinterten Metallisierungsbereichen in weiteren Metallisierungsebenen angeordnet sind und jeweils mit einer keramischen Platte agedeckt sind und auf der obersten, den Kühlelementen abgewandten keramischen Platte (5) versinterte Metallisierunsbereiche in einer Metallisierungsebene zur Aufnahme von Schaltungselementen angeordnet sind.
Abstract:
The invention relates to a thermoelectric generator module with a hot zone (1a) and a cold zone (1b) comprising at least a first metal-ceramic substrate (2), which has a first ceramic layer (6) and at least one structured first metallization (4) applied to the first ceramic layer (6) and is assigned to the hot zone, and at least a second metal-ceramic substrate (4), which has a second ceramic layer (7) and at least one structured second metallization (5) applied to the second ceramic layer and is assigned to the cold zone (1b), and also a number of thermoelectric generator components (N, P) located between the first and second structured metallizations (4, 5) of the metal-ceramic substrates (2, 3). Particularly advantageously, the first metal-ceramic substrate (2), assigned to the hot zone (1a), has at least one layer of steel or high-grade steel (8), wherein the first ceramic layer (6) is arranged between the first structured metallization (4) and the at least one layer of steel or high-grade steel (8). The invention also relates to an associated metal-ceramic substrate and to a method for producing it.
Abstract:
In various embodiments, an electronic module features a first cavity in a first side of a substrate, a fill hole extending from the first cavity, and a second cavity in a second side of the substrate. The second cavity is in fluidic communication with the fill hole, and a die is encapsulated within the second cavity.
Abstract:
The invention relates to a device for cooling sheet elements (20) for power electronics, comprising a heat sink (10) provided with cooling fins (14). Said heat sink delimiting an enclosed cavity (12), against the interior wall (32) of which a power electronics element (20) is intended to be fixed. The heat sink (10) is hermetically sealable.
Abstract:
In mindestens einer Ausführungsform umfasst das Modul (1) eine organische Leuchtdiode (2) mit einer lichtabstrahlenden Vorderseite (22) an einem Substrat (20) und mit einer Rückseite (23). Ferner beinhaltet das Modul (1) eine Leiterplatte (3). Die Leiterplatte (3) weist eine Befestigungsseite (32), an der die Leuchtdiode (2) befestigt ist, und eine Montageseite (33), die zu einer Montage des Moduls (1) eingerichtet ist, auf. Die Montageseite (33) ist frei von Leiterbahnen. Die Rückseite (23) der Leuchtdiode (2) ist mit elektrischen Verbindungsmitteln (4) elektrisch mit der Leiterplatte (3) verbunden. Weder die Leiterplatte (3) noch die Leuchtdiode (2) werden von den elektrischen Verbindungsmitteln (4) überragt, in Richtung senkrecht und parallel zur Vorderseite (22). Die Leiterplatte (3) weist mindestens eine Ausnehmung (34) zur elektrischen Kontaktierung der Leuchtdiode (2) auf.
Abstract:
Embodiments of the invention relate to a method for creating a flexible circuit, including defining a cavity in a top surface of a substrate before disposing a semiconductor chip within the cavity, such that a backside of the chip is disposed beneath the top surface of the substrate and above a bottom surface of the cavity. The method also includes forming a flexible connecting layer on the top surface of the substrate and extending over the chip. Other embodiments relate to a flexible circuit including a substrate defining a cavity in a top surface thereof. The cavity has encapsulant and a chip disposed therein, wherein a frontside of the chip is substantially coplanar with the top surface of the substrate. A flexible connecting layer is disposed on the top surface of the substrate and is partially supported by the substrate.
Abstract:
Embodiments of the invention relate to a method for creating a flexible circuit, including defining a cavity in a top surface of a substrate before disposing a semiconductor chip within the cavity, such that a backside of the chip is disposed beneath the top surface of the substrate and above a bottom surface of the cavity. The method also includes forming a flexible connecting layer on the top surface of the substrate and extending over the chip. Other embodiments relate to a flexible circuit including a substrate defining a cavity in a top surface thereof. The cavity has encapsulant and a chip disposed therein, wherein a frontside of the chip is substantially coplanar with the top surface of the substrate. A flexible connecting layer is disposed on the top surface of the substrate and is partially supported by the substrate.