Abstract:
Embodiments of the present disclosure provide a method and an apparatus for processing a substrate. The apparatus has a ring assembly. The ring assembly has an edge ring and a shadow ring. The edge ring has a ring shaped body. The edge ring body has a top surface and a bottom surface. Pin holes extend through the edge ring body from the top surface to the bottom surface. The shadow ring has a ring shaped body. The shadow ring body has an upper surface and a lower surface. Sockets are formed on the lower surface, wherein the sockets in the shadow ring body align with the pin holes in the edge ring body.
Abstract:
Implementations described herein provide a lift pin actuator. The lift pin actuator has a housing. The housing has an interior volume. A track is disposed in the interior volume and coupled to the housing. A center shaft is at least partially disposed in the interior volume of the housing. A guide is movably coupled to the track. At least one internal bellows is disposed in the interior volume, the internal bellows form a seal between the center shaft and the housing. An elastic member is disposed in the interior volume and configured to apply a force that retracts the center shaft into the housing. An inlet port is configured to introduce fluid into the interior volume between the internal bellows and the housing. The fluid generates a force opposing the elastic member to extend the center shaft relative to the housing.
Abstract:
The present disclosure generally relates to a method and apparatus for determining a metric related to erosion of a ring assembly used in an etching within a plasma processing chamber. In one example, the apparatus is configured to obtain a metric indicative of erosion on an edge ring disposed on a substrate support assembly in a plasma processing chamber. A sensor obtains the metric for the edge ring. The metric correlates to the quantity of erosion in the edge ring. In another example, the ring sensor may be arranged outside of a periphery of a substrate support assembly. The metric may be acquired by the ring sensor through a plasma screen.
Abstract:
Embodiments of an apparatus having an improved coil antenna assembly that can provide enhanced plasma in a processing chamber is provided. The improved coil antenna assembly enhances positional control of plasma location within a plasma processing chamber, and may be utilized in etch, deposition, implant, and thermal processing systems, among other applications where the control of plasma location is desirable. In one embodiment, an electrode assembly configured to use in a semiconductor processing apparatus includes a RF conductive connector, and a conductive member having a first end electrically connected to the RF conductive connector, wherein the conductive member extends outward and vertically from the RF conductive connector.
Abstract:
A gas distribution apparatus is provided having a first reservoir with a first upstream end and a first downstream end and a second reservoir with a second upstream end and a second downstream end. A reservoir switch valve is in fluid communication with the first downstream end of the first reservoir and the second downstream end of the second reservoir. The reservoir switch valve operable to selectively couple the first reservoir to an outlet of the reservoir switch valve when in a first state, and couple the second reservoir to the outlet of the reservoir switch valve when in a second state. A plurality of proportional flow control valves are provided having inlets coupled in parallel to the outlet of the reservoir switch valve The plurality of proportional flow control valves have outlets configured to provide gas to a processing chamber.
Abstract:
Embodiments of the invention provide a single ring comprising a circular ring-shaped body with an inner surface, closest in proximity to a centerline of the body, and an outer surface opposite the inner surface. The body has a bottom surface with a slot formed therein and a top surface with an outer end, adjacent to the outer surface, and an inner end adjacent to a slope extending, towards the centerline, down to a step on the inner surface. The body has a lip, disposed on the inner surface extending out from a vertical face below the step toward the centerline of the body, and is configured to support a substrate thereon. The body is sized such that a gap of less than about 2 mm is formed on the lip between the substrate and the vertical face of the step.
Abstract:
Embodiments of the present disclosure generally provide various apparatus and methods for reducing particles in a semiconductor processing chamber. One embodiment of present disclosure provides a vacuum screen assembly disposed over a vacuum port to prevent particles generated by the vacuum pump from entering substrate processing regions. Another embodiment of the present disclosure provides a perforated chamber liner around a processing region of the substrate. Another embodiment of the present disclosure provides a gas distributing chamber liner for distributing a cleaning gas around the substrate support under the substrate supporting surface.
Abstract:
Embodiments of the present disclosure generally relate to a lift pin assembly used for de-chucking substrates. The lift pin assembly includes a base and one or more lift pin holders. Each lift pin holder includes a first portion and a second portion. The first portion is coupled to the base by a metal connector and the second portion is coupled to the first portion by a metal connector. A resistor is disposed in the first portion of the lift pin holder. The second portion includes a lift pin support for supporting a lift pin. The lift pin, the lift pin support, and the metal connectors are electrically conductive. The base is connected to a reference voltage, such as the ground, forming a path for the residual electrostatic charge in the substrate from the substrate to the reference voltage.
Abstract:
A method and apparatus are provided for plasma etching a substrate in a processing chamber. A focus ring assembly circumscribes a substrate support, providing uniform processing conditions near the edge of the substrate. The focus ring assembly comprises two rings, a first ring and a second ring, the first ring comprising quartz, and the second ring comprising monocrystalline silicon, silicon carbide, silicon nitride, silicon oxycarbide, silicon oxynitride, or combinations thereof. The second ring is disposed above the first ring near the edge of the substrate, and creates a uniform electric field and gas composition above the edge of the substrate that results in uniform etching across the substrate surface.
Abstract:
A shielded lid heater lid heater suitable for use with a plasma processing chamber, a plasma processing chamber having a shielded lid heater and a method for plasma processing are provided. The method and apparatus enhances positional control of plasma location within a plasma processing chamber, and may be utilized in etch, deposition, implant, and thermal processing systems, among other applications where the control of plasma location is desirable. In one embodiment, a process for tuning a plasma processing chamber is provided that include determining a position of a plasma within the processing chamber, selecting an inductance and/or position of an inductor coil coupled to a lid heater that shifts the plasma location from the determined position to a target position, and plasma processing a substrate with the inductor coil having the selected inductance and/or position.