Abstract:
An apparatus to purify a melt is disclosed. A first portion of a melt in a chamber is frozen in a first direction. A fraction of the first portion is melted in the first direction. A second portion of the melt remains frozen. The melt flows from the chamber and the second portion is removed from the chamber. The freezing concentrates solutes in the melt and second portion. The second portion may be a slug with a high solute concentration. This system may be incorporated into a sheet forming apparatus with other components such as, for example, pumps, filters, or particle traps.
Abstract:
A method of controlling deflection of a charged particle beam in an electrostatic lens includes establishing a symmetrical electrostatic lens configuration comprising a plurality of electrodes disposed at unadjusted positions that are symmetric with respect to the central ray trajectory with applied unadjusted voltages that create fields symmetric with respect to the central ray trajectory. A symmetric electric field is calculated corresponding to the set of unadjusted voltages. A plurality of lower electrodes is arranged at adjusted positions that are asymmetric with respect to the central ray trajectory. A set of adjusted voltages is obtained for the plurality of lower electrodes, wherein the set of adjusted voltages corresponds to a set of respective potentials of the symmetric electric field at respective adjusted asymmetric positions. The adjusted voltages are applied to the asymmetric lens configuration when the charged particle beam passes therethrough.
Abstract:
An improved patterned magnetic bit data storage media and a method for manufacturing the same is disclosed. In one particular exemplary embodiment, the improved patterned magnetic bit data storage media may comprise an active region exhibiting substantially ferromagnetism; and an inactive region exhibiting substantially paramagnetism, the inactive region comprising at least two grains and a grain boundary interposed therebetween, wherein each of the at least two grains contain ferromagnetic material, and wherein the at least two grains are antiferromagnetically coupled.
Abstract:
An implantation system includes an ion extraction plate having a set of apertures configured to extract ions from an ion source to form a plurality of beamlets. A magnetic analyzer is configured to provide a magnetic field to deflect ions in the beamlets in a first direction that is generally perpendicular to a principle axis of the beamlets. A mass analysis plate includes a set of apertures wherein first ion species having a first mass/charge ratio are transmitted through the mass analysis plate and second ion species having a second mass/charge ratio are blocked by the mass analysis plate. A workpiece holder is configured to move with respect to the mass analysis plate in a second direction perpendicular to the first direction, wherein a pattern of ions transmitted through the mass analysis plate forms a continuous ion beam current along the first direction at the substrate.
Abstract:
An ion source is provided that utilizes the same dopant gas supplied to the chamber to generate the desired process plasma to also provide temperature control of the chamber walls during high throughput operations. The ion source includes a chamber having a wall that defines an interior surface. A liner is disposed within the chamber and has at least one orifice to supply the dopant gas to an inside of the chamber. A gap is defined between at least a portion of the interior surface of the chamber wall and the liner. A first conduit is configured to supply dopant gas to the gap where the dopant gas has a flow rate within the gap. A second conduit is configured to remove the dopant gas from the gap, wherein the flow rate of the dopant gas within the gap acts as a heat transfer media to regulate the temperature of the interior of the chamber.
Abstract:
A system and method for maintain a desired degree of platen flatness is disclosed. A laser system is used to measure the flatness of a platen. The temperature of the platen is then varied to achieve the desired level of flatness. In some embodiments, this laser system is only used during a set up period and the resulting desired temperature is then used during normal operation. In other embodiments, a laser system is used to measure the flatness of the platen, even while the workpiece is being processed.
Abstract:
Providing vapor to a vapor-receiving device housed in a high vacuum chamber. An ion beam implanter, as an example, has a removable high voltage ion source within a high vacuum chamber and a vapor delivery system that delivers vapor to the ion source and does not interfere with removal of the ion source for maintenance. For delivering vapor to a vapor-receiving device, such as the high voltage ion source under vacuum, a flow interface device is in the form of a thermally conductive valve block. A delivery extension of the interface device automatically connects and disconnects within the high vacuum chamber with the removable vapor receiving device by respective installation and removal motions. In an ion implanter, the flow interface device or valve block and source of reactive cleaning gas are mounted in a non-interfering way on the electrically insulating bushing that insulates the ion source from the vacuum housing and the ion source may be removed without disturbing the flow interface device. Multiple vaporizers for solid material, provisions for reactive gas cleaning, and provisions for controlling flow are provided in the flow interface device.
Abstract:
A sheet measurement apparatus has a sheet disposed in a melt. The measurement system uses a beam to determine a dimension of the sheet. This dimension may be, for example, height or width. The beam may be, for example, collimated light, a laser, x-rays, or gamma rays. The production of the sheet may be altered based on the measurements.
Abstract:
An energy contamination detection apparatus includes a membrane and a charge collection plate disposed at a distance from the membrane. The membrane is configured to receive an ion beam and allow a portion of the ion beam having energy levels above a desired energy level to pass therethrough toward the charge collection plate and absorb or reflect portions of the ion beam having energy levels at or below the desired energy level. A voltage source is electrically coupled to the charge collection plate for providing a bias voltage to the charge collection plate. A detection circuit is coupled to the charge collection plate and is configured to detect energy contamination based on an amount of charge collected on the charge collection plate.
Abstract:
A system for manipulating an ion beam having a principal axis includes an upper member having a first and a second coil generally disposed in different regions of the upper member and configured to conduct, independently of each other, a first and a second current, respectively. A lower member includes a third and a fourth coil that are generally disposed opposite to respective first and second coils and are configured to conduct, independently of each other, a third and a fourth current, respectively. A lens gap is defined between the upper and lower members, and configured to transmit the ion beam, wherein the first through fourth currents produce a 45 degree quadrupole field that exerts a rotational force on the ion beam about its principal axis.