Abstract:
A method of fabricating a replacement gate stack for a semiconductor device includes the following steps after removal of a dummy gate: growing a high-k dielectric layer over the area vacated by the dummy gate; depositing a thin metal layer over the high-k dielectric layer; depositing a sacrificial layer over the thin metal layer; performing a first rapid thermal anneal; removing the sacrificial layer; and depositing a metal layer of low resistivity metal for gap fill.
Abstract:
A method of fabricating a replacement gate stack for a semiconductor device includes the following steps after removal of a dummy gate: growing a high-k dielectric layer over the area vacated by the dummy gate; depositing a thin metal layer over the high-k dielectric layer; depositing a sacrificial layer over the thin metal layer; performing a first rapid thermal anneal; removing the sacrificial layer; and depositing a metal layer of low resistivity metal for gap fill.
Abstract:
A method of fabricating a replacement gate stack for a semiconductor device includes the following steps after removal of a dummy gate: growing a high-k dielectric layer over the area vacated by the dummy gate; depositing a thin metal layer over the high-k dielectric layer; depositing a sacrificial layer over the thin metal layer; performing a first rapid thermal anneal; removing the sacrificial layer; and depositing a metal layer of low resistivity metal for gap fill.
Abstract:
Semiconductor device fabrication methods are provided which include: providing a structure with at least one region and including a dielectric layer disposed over a substrate; forming a multilayer stack structure including a threshold-voltage adjusting layer over the dielectric layer, the multilayer stack structure including a first threshold-voltage adjusting layer in a first region of the at least one region, and a second threshold-voltage adjusting layer in a second region of the at least one region; and annealing the structure to define a varying threshold voltage of the at least one region, the annealing facilitating diffusion of at least one threshold voltage adjusting species from the first threshold-voltage adjusting layer and the second threshold-voltage adjusting layer into the dielectric layer, where a threshold voltage of the first region is independent of the threshold voltage of the second region.
Abstract:
After forming a buried nanowire segment surrounded by a gate structure located on a substrate, an epitaxial source region is grown on a first end of the buried nanowire segment while covering a second end of the buried nanowire segment and the gate structure followed by growing an epitaxial drain region on the second end of the buried nanowire segment while covering the epitaxial source region and the gate structure. The epitaxial source region includes a first semiconductor material and dopants of a first conductivity type, while the epitaxial drain region includes a first semiconductor material different from the first semiconductor material and dopants of a second conductivity type opposite the first conductivity type.
Abstract:
Ion implantation to change an effective work function for dual work function metal gate integration is presented. One method may include forming a high dielectric constant (high-k) layer over a first-type field effect transistor (FET) region and a second-type FET region; forming a metal layer having a first effective work function compatible for a first-type FET over the first-type FET region and the second-type FET region; and changing the first effective work function to a second, different effective work function over the second-type FET region by implanting a species into the metal layer over the second-type FET region.
Abstract:
A first gate structure and a second gate structure are formed over a semiconductor material layer. The first gate structure includes a planar silicon-based gate dielectric, a planar high-k gate dielectric, a metallic nitride portion, and a first semiconductor material portion, and the second gate structure includes a silicon-based dielectric material portion and a second semiconductor material portion. After formation of gate spacers and a planarization dielectric layer, the second gate structure is replaced with a transient gate structure including a chemical oxide portion and a second high-k gate dielectric. A work-function metal layer and a conductive material portion can be formed in each gate electrode by replacement of semiconductor material portions. A gate electrode includes the planar silicon-based gate dielectric, the planar high-k gate dielectric, and a U-shaped high-k gate dielectric, and another gate electrode includes the chemical oxide portion and another U-shaped high-k gate dielectric.
Abstract:
A method of fabricating a replacement gate stack for a semiconductor device includes the following steps after removal of a dummy gate: growing a high-k dielectric layer over the area vacated by the dummy gate; depositing a thin metal layer over the high-k dielectric layer; depositing a sacrificial layer over the thin metal layer; performing a first rapid thermal anneal; removing the sacrificial layer; and depositing a metal layer of low resistivity metal for gap fill.
Abstract:
After forming a buried nanowire segment surrounded by a gate structure located on a substrate, an epitaxial source region is grown on a first end of the buried nanowire segment while covering a second end of the buried nanowire segment and the gate structure followed by growing an epitaxial drain region on the second end of the buried nanowire segment while covering the epitaxial source region and the gate structure. The epitaxial source region includes a first semiconductor material and dopants of a first conductivity type, while the epitaxial drain region includes a first semiconductor material different from the first semiconductor material and dopants of a second conductivity type opposite the first conductivity type.
Abstract:
A semiconductor structure includes a substrate and an intrinsic replacement channel. A tunneling field effect transistor (TFET) fin may be formed by the intrinsic replacement channel, a p-fin and an n-fin formed upon the substrate. The p-fin may serve as the source of the TFET and the n-fin may serve as the drain of the TFET. The replacement channel may be formed in place of a sacrificial channel of a diode fin that includes the p-fin, the n-fin, and the sacrificial channel at the p-fin and n-fin junction.