Abstract:
Ge and III-V channel semiconductor devices having maximized compliance and free surface relaxation and methods of fabricating such Ge and III-V channel semiconductor devices are described. For example, a semiconductor device includes a semiconductor fin disposed above a semiconductor substrate. The semiconductor fin has a central protruding or recessed segment spaced apart from a pair of protruding outer segments along a length of the semiconductor fin. A cladding layer region is disposed on the central protruding or recessed segment of the semiconductor fin. A gate stack is disposed on the cladding layer region. Source/drain regions are disposed in the pair of protruding outer segments of the semiconductor fin.
Abstract:
Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
Abstract:
Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
Abstract:
A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
Abstract:
Techniques are disclosed for forming integrated circuit structures including a magnetic tunnel junction (MTJ), such as spin-transfer torque memory (STTM) devices, having magnetic contacts. The techniques include incorporating an additional magnetic layer (e.g., a layer that is similar or identical to that of the magnetic contact layer) such that the additional magnetic layer is coupled antiferromagnetically (or in a substantially antiparallel manner). The additional magnetic layer can help balance the magnetic field of the magnetic contact layer to limit parasitic fringing fields that would otherwise be caused by the magnetic contact layer. The additional magnetic layer may be antiferromagnetically coupled to the magnetic contact layer by, for example, including a nonmagnetic spacer layer between the two magnetic layers, thereby creating a synthetic antiferromagnet (SAF). The techniques can benefit, for example, magnetic contacts having magnetic directions that are substantially in-line or substantially in-plane with the layers of the MTJ stack.
Abstract:
Techniques are disclosed for forming non-planar resistive memory cells, such as non-planar resistive random-access memory (ReRAM or RRAM) cells. The techniques can be used to reduce forming voltage requirements and/or resistances involved (such as the resistance during the low-resistance state) relative to planar resistive memory cells for a given memory cell space. The non-planar resistive memory cell includes a first electrode, a second electrode, and a switching layer disposed between the first and second electrodes. The second electrode may be substantially between opposing portions of the switching layer, and the first electrode may be substantially adjacent to at least two sides of the switching layer, after the non-planar resistive memory cell is formed. In some cases, an oxygen exchange layer (OEL) may be disposed between the switching layer and one of the first and second electrodes to, for example, increase flexibility in incorporating materials in the cell.
Abstract:
Enhancement mode gallium nitride (GaN) semiconductor devices having a composite high-k metal gate stack and methods of fabricating such devices are described. In an example, a semiconductor device includes a gallium nitride (GaN) channel region disposed above a substrate. A gate stack is disposed on the GaN channel region. The gate stack includes a composite gate dielectric layer disposed directly between the GaN channel region and a gate electrode. The composite gate dielectric layer includes a high band gap Group III-N layer, a first high-K dielectric oxide layer, and a second high-K dielectric oxide layer having a higher dielectric constant than the first high-K dielectric oxide layer. Source/drain regions are disposed on either side of the GaN channel region.
Abstract:
Techniques are disclosed for gallium nitride (GaN) oxide isolation and formation of GaN transistor structures on a substrate. In some cases, the GaN transistor structures can be used for system-on-chip integration of high-voltage GaN front-end radio frequency (RF) switches on a bulk silicon substrate. The techniques can include, for example, forming multiple fins in a substrate, depositing the GaN layer on the fins, oxidizing at least a portion of each fin in a gap below the GaN layer, and forming one or more transistors on and/or from the GaN layer. In some cases, the GaN layer is a plurality of GaN islands, each island corresponding to a given fin. The techniques can be used to form various non-planar isolated GaN transistor architectures having a relatively small form factor, low on-state resistance, and low off-state leakage, in some cases.
Abstract:
Techniques are disclosed for forming integrated circuit structures including a magnetic tunnel junction (MTJ), such as spin-transfer torque memory (STTM) devices, having magnetic contacts. The techniques include incorporating an additional magnetic layer (e.g., a layer that is similar or identical to that of the magnetic contact layer) such that the additional magnetic layer is coupled antiferromagnetically (or in a substantially antiparallel manner). The additional magnetic layer can help balance the magnetic field of the magnetic contact layer to limit parasitic fringing fields that would otherwise be caused by the magnetic contact layer. The additional magnetic layer may be antiferromagnetically coupled to the magnetic contact layer by, for example, including a nonmagnetic spacer layer between the two magnetic layers, thereby creating a synthetic antiferromagnet (SAF). The techniques can benefit, for example, magnetic contacts having magnetic directions that are substantially in-line or substantially in-plane with the layers of the MTJ stack.
Abstract:
Techniques are disclosed for fabricating a self-aligned spin-transfer torque memory (STTM) device with a dot-contacted free magnetic layer. In some embodiments, the disclosed STTM device includes a first dielectric spacer covering sidewalls of an electrically conductive hardmask layer that is patterned to provide an electronic contact for the STTM's free magnetic layer. The hardmask contact can be narrower than the free magnetic layer. The first dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer. In some embodiments, the STTM further includes an optional second dielectric spacer covering sidewalls of its free magnetic layer. The second dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer and may serve, at least in part, to protect the sidewalls of the free magnetic layer from redepositing of etch byproducts during such patterning, thereby preventing electrical shorting between the fixed magnetic layer and the free magnetic layer.