Abstract:
An optoelectronic semiconductor component includes a first functional region having an active zone provided for generating radiation or for receiving radiation, and a second functional region, which is suitable for contributing to the driving of the first functional region. The first functional region and the second functional region are integrated on the same carrier substrate.
Abstract:
An LED module has an electrically insulating main body, a base surface and a mounting surface located opposite the base surface. A number of electrical connection contacts are arranged at the mounting surface. The connection contacts do not adjoin the base surface. A heat sink is arranged in the main body. The heat sink extends from the mounting surface as far as the base surface. Furthermore, the LED module has a number of LED chips, each having an electrically insulating carrier substrate at a chip underside and two chip contacts at a chip top side. The LED chips are arranged with the electrically insulating carrier substrate on the heat sink.
Abstract:
An optoelectronic device, in particular an at least partially transparent pane for example of a vehicle, comprises a first layer, in particular an intermediate layer arranged between a cover layer and a carrier layer, at least one electronic or optoelectronic component, which is at least partially or completely embedded in the first layer and at least one structured conductor layer. A first portion of the conductor layer is arranged on an upper surface of the first layer and a second portion of the conductor layer is arranged on a top surface of the electronic or optoelectronic component and is in contact with an electric contact of the electronic or optoelectronic component. The electric contact, in particular a contact pad, is arranged on the top surface.
Abstract:
An optoelectronic light emitting device includes a pixel with a transparent or translucent carrier substrate, on which a semiconductor light emitting arrangement with at least one micro LED is arranged. The micro LED extends over a partial area of the pixel. The main radiation direction of the semiconductor light emitting arrangement is directed onto a backscattering surface element arranged behind the transparent carrier substrate in viewing direction. The semiconductor light emitting arrangement includes a beam shaping element.
Abstract:
An optoelectronic device comprises a plurality of optoelectronic light sources being arranged on a first layer, in particular an intermediate layer being arranged between a cover layer and a carrier layer. The first layer comprises or consists of an at least partially transparent material and each optoelectronic light source of the plurality of optoelectronic light sources comprises an individual light converter for converting light emitted by the associated light source into converted light. The light converter of each optoelectronic light source is arranged on the first layer and/or the associated optoelectronic light source.
Abstract:
Various embodiments may relate to a component arrangement with at least two electrical components arranged next to one another in a product configuration. Each of the electrical components have at least two electrical terminal contacts and the components arranged next to one another are mechanically connected to one another by an adhesive arranged between the components, and the component arrangement is designed for the individual components of the component arrangement to be applied together to a circuit carrier.
Abstract:
An optoelectronic semiconductor component includes a first functional region having an active zone provided for generating radiation or for receiving radiation, and a second functional region, which is suitable for contributing to the driving of the first functional region. The first functional region and the second functional region are integrated on the same carrier substrate.
Abstract:
A method for producing an illuminant is specified, in which a positioning device (3) holds an optoelectronic semiconductor component (1) inside a tolerance range (4) on the upper side of a connection carrier (2) during the mechanical fixation and electrical connecting of the optoelectronic semiconductor component (1) to the connection carrier (2).
Abstract:
An electronic device includes a base body, which has a top side and also an underside lying opposite the top side. The base body has connection locations at its underside. An electronic component is arranged at the base body at the top side of the base body. The base body has at least one side area having at least one point of inspection having a first region and second region. The second region is embodied as an indentation in the first region. The first and the second region contain different materials.
Abstract:
Electronic component with a support comprising a first inorganic insulating layer and a second inorganic insulating layer, between which a metal core is arranged, a first, a second and a third electrically conductive structure which are arranged on a top surface of the carrier, a first and a second electrical contact point and a thermal contact point, which are arranged on a bottom surface of the carrier, a component and an electrical protection element which are arranged on the side of the top surface of the carrier, in which the first electrically conductive structure is electrically conductively connected to the first electrical contact point, the second electrically conductive structure is electrically conductively connected to the second electrical contact point, the third electrically conductive structure is electrically conductively connected to the thermal contact point, the component is electrically conductively connected to the first and second electrically conductive structures, the electrical protection element is electrically conductively connected to the third electrically conductive structure and the first or second electrically conductive structure.