Abstract:
A chip package includes: a substrate having a first and a second surfaces; a device region formed in or disposed on the substrate; a dielectric layer disposed on the first surface; at least one conducting pad disposed in the dielectric layer and electrically connected to the device region; a planar layer disposed on the dielectric layer, wherein a vertical distance between upper surfaces of the planar layer and the conducting pad is larger than about 2 μm; a transparent substrate disposed on the first surface; a first spacer layer disposed between the transparent substrate and the planar layer; and a second spacer layer disposed between the transparent substrate and the substrate and extending into an opening of the dielectric layer to contact with the conducting pad, wherein there is substantially no gap between the second spacer layer and the conducting pad.
Abstract:
A chip package is provided. The chip package includes a first chip including a carrier substrate and a device substrate thereon. A second chip is mounted on the device substrate. A portion of the device substrate extends outward from the edge of the second chip, so as to be exposed from the second chip. A conductive pad is between the device substrate and the second chip. A polymer protective layer conformally covers the second chip, the exposed portion of the device substrate, and the edge of the carrier substrate. A redistribution layer is disposed on the polymer protective layer and extends into a first opening that passes through the polymer protective layer and the second chip and exposes the conductive pad, so as to be electrically connected to the conductive pad.
Abstract:
A chip package includes a chip, an insulating layer and a conductive layer. The chip includes a substrate, an epitaxy layer, a device region and a conductive pad. The epitaxy layer is disposed on the substrate, and the device region and the conductive pad are disposed on the epitaxy layer. The conductive pad is at a side of the device region and connected to the device region. The conductive pad protrudes out of a side surface of the epitaxy layer. The insulating layer is disposed below the substrate and extended to cover the side surface of the epitaxy layer. The conductive layer is disposed below the insulating layer and extended to contact the conductive pad. The conductive layer and the side surface of the epitaxy layer are separated by a first distance.
Abstract:
A chip package includes a chip, an insulating layer, a flowing insulating material layer and conductive layer. The chip has a conductive pad, a side surface, a first surface and a second surface opposite to the first surface, which the side surface is between the first surface and the second surface, and the conductive is below the first surface and protruded from the side surface. The insulating layer covers the second surface and the side surface, and the flowing insulating material layer is disposed below the insulating layer, and the flowing insulating material layer has a trench exposing the conductive pad protruded form the side surface. The conductive layer is disposed below the flowing insulating material layer and extended into the trench to contact the conductive pad.
Abstract:
A chip package includes a chip, an isolation layer on the bottom surface and the sidewall, a redistribution layer that is on the isolation layer and in electrical contact with a side surface of the conductive pad, and a passivation layer. The chip has a sensor, at least one conductive pad, a top surface, a bottom surface, and a sidewall. The sensor is located on the top surface. The conductive pad is located on an edge of the top surface. The redistribution layer at least partially protrudes from the conductive pad so as to be exposed. The passivation layer is located on the isolation layer and the redistribution layer, such that the redistribution layer not protruding from the conductive pad is between the passivation layer and the isolation layer, and the redistribution layer protruding from the conductive pad is located on the passivation layer.
Abstract:
An electronic device includes an image sensor that has a device layer and a MEMS device that is located on the image sensor and includes a MEMS element, a cap element, and a cover layer. The MEMS element having plural hollow regions is located on the device layer, such that a first cavity is formed between the MEMS element and the image sensor. The cap element having an opening is located on a surface of the MEMS element facing away from the device layer, such that a second cavity is formed between the cap element and the MEMS element and communicates with the opening. The first cavity communicates with the second cavity through the hollow regions. The cover layer is located on a surface of the cap element facing away from the MEMS element and is located in the opening of the cap element.
Abstract:
This present invention provides a method of manufacturing a chip scale sensing chip package, comprising the steps of: providing a sensing device wafer having a first top surface and a first bottom surface opposite to each other, whereby the sensing device wafer comprises a plurality of chip areas, and each of the chip areas comprising a sensing device and a plurality of conductive pads adjacent to the sensing chip nearby the first top surface; providing a cap wafer having a second top surface and a second bottom surface opposite to each other, and bonding the second surface of the cap wafer to the first top surface of the sensing device wafer by sandwiching a first adhesive layer therebetween; providing a temporary carrier substrate, and bonding the temporary carrier substrate to the second top surface of the cap wafer by sandwiching a second adhesive layer therebetween; forming a wiring layer connecting to each of the conductive pads on the first bottom surface of the sensing device wafer; providing a first protective layer on the wiring layer; removing the temporary carrier substrate and the second adhesive layer; forming a second protective layer on the second top surface; removing the first protective layer; scribing the chip areas to generate a plurality of individual chip scale sensing chip package; and removing the second protective layer.