Abstract:
Techniques of forming a foamed insulation material from gypsum waste are disclosed herein. One example technique includes mechanically comminuting the gypsum waste from an original size into particles of gypsum at a target size smaller than the original size and mixing the particles of the gypsum with a binder to form a mixture of particles and binder. The binder is configured to bind the particles of gypsum upon hydration. The example technique can further include performing air entrainment on the mixture until a foam is formed from the mixture having the particles of gypsum and binder. The foam has water that causes the binder to bind the particles of gypsum. The example technique can then include removing moisture from the mixture with the formed foam to form a foamed insulation material from the particles of gypsum.
Abstract:
A packaging system for honeycomb assemblies, each including a honeycomb body and reinforcing tube held together by an interference fit or axial compression achieved by thermal expansion coefficient differences between the honeycomb body and reinforcing tube. The reinforcing tube then protects the honeycomb body, facilitating a compact and structurally-strong package.
Abstract:
An expanded lightweight aggregate has compositional ranges (Wt. % Range) of about: (a) 40 to 60% ground glass or pumice, 40 to 60% water, 3 to 15% sodium silicate, and 0.1 to 5% NaNO3 for the slurry; and (b) 50 to 85% ground glass or pumice, and 15 to 50% slurry for the granulator.
Abstract:
There is disclosed a plugged honeycomb structure. A plugged honeycomb structure includes a pillar-shaped honeycomb structure body having porous partition walls defining a plurality of cells which become through channels for a fluid and extend from a first end face to a second end face, and plugging portions disposed in open ends of predetermined cells in the first end face and open ends of residual cells in the second end face, and the partition walls are constituted of a porous body including α-Al2O3 as a main phase and further including aluminum titanate and glass.
Abstract translation:公开了一种堵塞的蜂窝结构。 堵塞蜂窝结构体包括:柱状蜂窝结构体,其具有多孔分隔壁,该多孔分隔壁形成多个细胞,该细胞通过流体通道并从第一端面延伸到第二端面;以及插入部分, 第一端面的细胞和第二端面中的残留细胞的开口端,隔壁由包含α-Al 2 O 3作为主相的多孔体构成,并且还包括钛酸铝和玻璃。
Abstract:
The invention comprises a concrete form. The concrete form comprises a first panel having a first primary surface for contacting plastic concrete and a second primary surface opposite the first surface, wherein the first panel is made from a rigid plastic sheet or a metal sheet; and a second panel spaced from the second primary surface of the first panel, wherein the second panel is made from a rigid plastic sheet or a metal sheet. The concrete form also comprises a layer of insulating material disposed between the first panel and the second panel. A method of using the concrete form is also disclosed.
Abstract:
It is a principal object of the present invention to provide a dielectric having a high relative dielectric constant and dielectric loss minimized in high frequency bands. That is, the present invention relates to a composite dielectric comprising conductive particles dispersed in a porous body of inorganic oxide, wherein 1) the relative dielectric constant εr of the dielectric in high frequency bands of 1 GHz or more is 4 or more, and 2) the dielectric loss tans of the dielectric in high frequency bands of 1 GHz or more is 2×10−4 or less, and to a manufacturing method therefor.
Abstract:
The present invention relates to a concrete composite comprising concrete and a thermoelectric material, wherein the thermoelectric material comprises a complex sulphide mineral, wherein the composite comprises at least 20 wt % concrete.
Abstract:
A method for forming a super-insulating material for a vacuum insulated structure for an appliance includes disposing hollow glass spheres within a rotating drum, wherein a plurality of interstitial spaces are defined between the hollow glass spheres. An anchor material is disposed within the rotating drum. The hollow glass spheres and the anchor material are rotated within the rotating drum, wherein the anchor material is mixed with the hollow glass spheres to partially occupy the interstitial spaces. A silica-based material is disposed within the rotating drum. The silica-based material is mixed with the anchor material and the hollow glass spheres to define a super-insulating material, wherein the silica-based material attaches to the anchor material and is entrapped within the interstitial spaces. The silica-based material and the anchor material occupy substantially all of an interstitial volume defined by the interstitial spaces.
Abstract:
A hydraulically binding composition can be used to produce an inorganic fire-protection and/or insulation foam. The composition includes: (i) a hydraulic binder, (ii) a blowing-agent mixture, (iii) a thermally expandable compound, and (iv) optionally a foam stabilizer, where the at least one thermally expandable compound, depending on a particle size thereof and an adjusted density of a foamed composition, is present in a quantity such that a foam structure of the foamed composition is not destroyed by expansion thereof during heating of the composition above an onset temperature thereof.