Abstract:
A method of forming integrated circuits includes providing a wafer that includes a plurality of dies; aligning a first top die to a first bottom die in the wafer; recording a first destination position of the first top die after the first top die is aligned to the first bottom die; bonding the first top die onto the first bottom die; calculating a second destination position of a second top die using the first destination position; moving the second top die to the second destination position; and bonding the second top die onto a second bottom die without any additional alignment action.
Abstract:
A photoconductor that includes, for example, a supporting substrate, a photogenerating layer, and at least one charge transport layer comprised of at least one charge transport component, and wherein the at least one charge transport layer contains at least one phosphine oxide.
Abstract:
A method of bonding and detaching a temporary carrier used for handling a wafer during the fabrication of semiconductor devices includes bonding a wafer onto a carrier through a first adhesive layer and a second adhesive layer, in which the edge zone of the wafer and the carrier is covered by the first adhesive layer while the edge zone is not covered by the second adhesive layer. A wafer edge clean process is then performed to remove the first adhesive layer adjacent the edge of the wafer and expose the edge zone of the carrier, followed by removing the second adhesive layer from the carrier. After detaching the carrier from the wafer, the first adhesive layer remaining on the wafer is removed.
Abstract:
A LED display device (100) includes a base (2) and at least one front door (1). A LED module (10) is secured in the front door. The front door is rotatablely engaged with the base, and can be opened at any angle from or intimately closed over the base. The LED display device supplies an easy access from the front for attachment or detachment of an LED module by opening the front door. It is easy and efficient for installations since a space from the back of the LED display device for maintenance is not necessary.
Abstract:
A photoconductor that includes, for example, a supporting substrate, a photogenerating layer, and at least one charge transport layer comprised of at least one charge transport component, and a nitrogen heterocyclic component such as a triazine.
Abstract:
An intermediate transfer media, such as a belt, that includes a first supporting substrate, such as a polyimide substrate layer, and a second layer of a silicone containing polyamideimide layer. Also, the intermediate transfer media can include a silicone containing polyamideimide single layer.
Abstract:
A stacked structure includes a first substrate bonded to a second substrate such that a first pad structure of the first substrate contacts a second pad structure of the second substrate. A transistor gate is formed over the second substrate, and a first conductive structure extends through the second substrate and has a top surface that is substantially planar with a top surface of the second substrate. An interlayer dielectric (ILD) layer is disposed over the transistor gate, and a passivation layer is disposed over the ILD layer and includes a second pad structure that makes electrical contact with the second conductive structure. The ILD layer includes at least one contact structure that extends through the ILD layer and makes electrical contact with the transistor gate. A second conductive structure is disposed in the ILD layer and is at least partially disposed over a surface of the first conductive structure.
Abstract:
A photoconductor containing an optional supporting substrate, a thiophosphate containing photogenerating layer, and a charge transport layer which includes a polyhedral oligomeric silsesquioxane (POSS)-containing material and an optional thiophosphate.
Abstract:
Exemplary embodiments provide a coating composition for an outermost layer of a fuser member that can include a plurality of fluorinated diamond-containing particles dispersed in an elastomeric matrix.