Abstract:
The invention provides apparatuses and methods of use thereof for sequencing nucleic acids subjected to a force, and thus considered under tension. The methods may employ but are not dependent upon incorporation of extrinsically detectably labeled nucleotides.
Abstract:
Methods and apparatus relating to FET arrays including large FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
Abstract:
Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in the concentration of inorganic pyrophosphate (PPi), hydrogen ions, and nucleotide triphosphates.
Abstract:
Disclosed herein are methods and apparatuses for sequencing a nucleic acid. These methods permit a very large number of independent sequencing reactions to be arrayed in parallel, permitting simultaneous sequencing of a very large number (>10,000) of different oligonucleotides.
Abstract:
This invention relates to methods of sequencing DNA. More specifically, this invention relates to methods of sequencing both the sense and antisense strands of DNA through the use of blocked and unblocked sequencing primers. In brief, these methods include the steps of annealing an unblocked primer to a first strand of nucleic acid; annealing a second blocked primer to a second strand of nucleic acid; elongating the nucleic acid along the first strand with a polymerase; terminating the first sequencing primer; deblocking the second primer; and elongating the nucleic acid along the second strand.
Abstract:
The present invention discloses a methodology which is directed to providing positive confirmation that nucleic acids, possessing putatively identified sequences predicted to generate observed GeneCalling™ signals, are actually present within the sample from which the signal was originally derived. The putatively identified nucleic acid fragment within the sample possesses 3′- and 5′-ends with known terminal subsequences. The method involves contacting nucleic acid fragments in a sample in amplifying conditions with (i) a nucleic acid polymerase; (ii) “regular” primer oligonucleotides having sequences comprising hybridizable portions of known terminal subsequences; and (iii) a “poisoning” oligonucleotide primer. Nucleic acids amplified with a poisoning primer are distinguishable upon detection from nucleic acids amplified with regular primers.
Abstract:
This invention is an integrated instrument for the high-capacity electrophoretic analysis of biopolymer samples. It comprises a specialized high-voltage, electrophoretic module in which the migration lanes are formed between a bottom plate and a plurality of etched grooves in a top plate, the module permitting concurrent separation of 80 or more separate samples. In thermal contact with the bottom plate is a thermal control module incorporating a plurality of Peltier heat transfer devices for the control of temperature and gradients in the electrophoretic medium. Fragments are detected by a transmission imaging spectrograph which simultaneously spatially focuses and spectrally resolves the detection region of all the migration lanes. The spectrograph comprises a transmission dispersion element and a CCD array to detect signals. Signal analysis comprises the steps of noise filtering, comparison in a configuration space with signal prototypes, and selection of the best prototype. Optionally post-processing is done by a Monte-Carlo simulated annealing algorithm to improve results. Optionally, an array of micro-reactors can be integrated into the instrument for the generation of sequencing reaction fragments directly from crude DNA samples.
Abstract:
This invention relates to a method and device for separating charged particles according to their diffusivities in a separation medium by means of a spatially and temporally varying electric potential. The method is particularly suited to sizing and separating DNA fragments, to generating DNA fragment length polymorphism patterns, and to sequencing DNA through the separation of DNA sequencing reaction products. The method takes advantage of the transport of charged particles subject to an electric potential that is cycled between an off-state (in which the potential is flat) and one or more on-states, in which the potential is preferably spatially periodic with a plurality of eccentrically shaped stationary potential wells. The potential wells are at constant spatial positions in the on-state. Differences in liquid-phase diffusivities lead to charged particle separation. A preferred embodiment of the device is microfabricated. A separation medium fills physically defined separation lanes in the device. Electrodes deposited substantially transverse to the lanes create the required electric potentials. Advantageously, injection ports allow sample loading, and special gating electrodes focus the sample prior to separation. The effects of thermal gradients are minimized by placing the device in contact with a thermal control module, preferably a plurality of Peltier-effect heat transfer devices. The small size of a microfabricated device permits rapid separation in a plurality of separation lanes.
Abstract:
Techniques for removing artefacts, such as RF interference and/or noise, from magnetic resonance data. The techniques include: obtaining input magnetic resonance (MR) data using at least one radio-frequency (RF) coil of a magnetic resonance imaging (MRI) system; and generating an MR image from input MR data at least in part by using a neural network model to suppress at least one artefact in the input MR data.
Abstract:
Aspects of the technology described herein relate to methods and apparatuses for identifying gestures based on ultrasound data. Performing gesture recognition may include obtaining, with a wearable device, ultrasound data corresponding to an anatomical gesture; and identifying the anatomical gesture based on the obtained ultrasound data. Interfacing with a computing device may include identifying, with a wearable device, an anatomical gesture using ultrasound data obtained by the wearable device; and causing the computing device to perform a specific function based on the anatomical gesture identified by the wearable device. Training a wearable device to perform gesture recognition may include obtaining, with the wearable device, ultrasound data corresponding to an anatomical gesture; obtaining non-ultrasound data corresponding to the anatomical gesture; and training a machine learning model accessed by the wearable device to recognize the anatomical gesture based on correlating the non-ultrasound data and the ultrasound data.