Abstract:
The present disclosure relates a method of forming an integrated circuit. In some embodiments, the method is performed by patterning a first masking layer over a substrate to have a first plurality of openings at a memory cell region and a second plurality of openings at a boundary region. A first plurality of dielectric bodies are formed within the first plurality of openings and a second plurality of dielectric bodies are formed within the second plurality of openings. A second masking layer is formed over the first masking layer and the first and second plurality of dielectric bodies. The first and second masking layers are removed at the memory cell region, and a first conductive layer is formed to fill recesses between the first plurality of dielectric bodies. A planarization process reduces a height of the first conductive layer and removes the first conductive layer from over the boundary region.
Abstract:
The present disclosure relates to a split gate memory device which requires less number of processing steps than traditional baseline processes and methods of making the same. Word gate/select gate (SG) pairs are formed around a sacrificial spacer. The resulting SG structure has a distinguishable non-planar top surface. The spacer layer that covers the select gate also follows the shape of the SG top surface. A dielectric disposed above the inter-gate dielectric layer and arranged between the neighboring sidewalls of the each memory gate and select gate provides isolation between them.
Abstract:
The present disclosure relates to a structure and method for reducing contact over-etching and high contact resistance (Rc) on an embedded flash memory HKMG integrated circuit. In one embodiment, an STI region underlying a memory contact pad region is recessed to make the STI surface substantially co-planar with the rest of the semiconductor substrate. The recess allows formation of thicker memory contact pad structures. The thicker polysilicon on these contact pad structures prevents contact over-etching and thus reduces the Rc of contacts formed thereon.
Abstract:
The present disclosure relates an integrated circuit (IC) for an embedded flash memory device. In some embodiments, the IC includes a memory array region and a boundary region surrounding the memory array region disposed over a semiconductor substrate. A hard mask is disposed at the memory array region comprising a plurality of discrete portions. The hard mask is disposed under a control dielectric layer of the memory array region.
Abstract:
The present disclosure relates to a non-planar FEOL (front-end-of-the-line) capacitor comprising a charge trapping dielectric layer disposed between electrodes, and an associated method of fabrication. In some embodiments, the non-planar FEOL capacitor has a first electrode disposed over a substrate. A charge trapping dielectric layer is disposed onto the substrate at a position adjacent to the first electrode. The charge trapping dielectric layer has an “L” shape, with a lateral component extending in a first direction and a vertical component extending in a second direction. A second electrode is arranged onto the lateral component and is separated from the first electrode by the first component.
Abstract:
Some embodiments relate to a memory cell with a charge-trapping layer of nanocrystals, comprising a tunneling oxide layer along a select gate, a control oxide layer formed between a control gate and the tunnel oxide layer, and a plurality of nanocrystals arranged between the tunneling and control oxide layers. An encapsulating layer isolates the nanocrystals from the control oxide layer. Contact formation to the select gate includes a two-step etch. A first etch includes a selectivity between oxide and the encapsulating layer, and etches away the control oxide layer while leaving the encapsulating layer intact. A second etch, which has an opposite selectivity of the first etch, then etches away the encapsulating layer while leaving the tunneling oxide layer intact. As a result, the control oxide layer and nanocrystals are etched away from a surface of the select gate, while leaving the tunneling oxide layer intact for contact isolation.
Abstract:
The embodiments described provide methods and semiconductor device areas for etching an active area region on a semiconductor body and epitaxially depositing a semiconductor layer overlying the active region. The methods enable the mitigation or elimination of problems encountered in subsequent manufacturing associated with STI divots.
Abstract:
A method for fabricating the semiconductor device is provided. The method includes depositing a first dielectric layer; forming a first memory cell over the first dielectric layer; depositing a second dielectric layer over the first memory cell; and forming a second memory cell over the second dielectric layer. Forming the first memory cell includes depositing a first resistance switching layer over the first dielectric layer and performing a first physical etching process to pattern the first resistance switching layer into a first resistance switching element. Forming the second memory cell includes depositing a second resistance switching layer over the second dielectric layer and performing a chemical etching process to pattern the second resistance switching layer into a second resistance switching element.
Abstract:
A device comprises a control gate structure and a memory gate structure over a substrate, a charge storage layer formed between the control gate structure and the memory gate structure, a first spacer along a sidewall of the memory gate structure, a second spacer along a sidewall of the control gate structure, an oxide layer over a top surface of the memory gate structure, a top spacer over the oxide layer, a first drain/source region formed in the substrate and adjacent to the memory gate structure and a second drain/source region formed in the substrate and adjacent to the control gate structure.
Abstract:
Some embodiments relate to a method for forming a memory device. The method includes forming a first memory cell over a substrate and forming a second memory cell over the substrate. Further, an inter-level dielectric (ILD) layer is formed over the substrate such that the ILD layer comprises sidewalls defining a first trough between the first memory cell and the second memory cell. In addition, a first dielectric layer is formed over the ILD layer and within the first trough.