Abstract:
Embodiments of the invention generally include multi-component catalyst systems, polymerization processes and heterophasic copolymers formed by the processes. The multi-component catalyst system generally includes a first catalyst component selected from Ziegler-Natta catalyst systems including a diether internal electron donor and a metallocene catalyst represented by the general formula XCpACpBMAn, wherein X is a structural bridge, CpA and CpB each denote a cyclopentadienyl group or derivatives thereof, each being the same or different and which may be either substituted or unsubstituted, M is a transition metal and A is an alkyl, hydrocarbyl or halogen group and n is an integer between 0 and 4. The multi-component catalyst system further includes a second catalyst component generally represented by the formula XCpACpBMAn, wherein X is a structural bridge, CpA and CpB each denote a cyclopentadienyl group or derivatives thereof, each being the same or different and which may be either substituted or unsubstituted, M is a transition metal and A is an alkyl, hydrocarbyl or halogen group and n is an integer between 0 and 4 and wherein the second catalyst component exhibits a higher ethylene response than the first catalyst component.
Abstract:
A composite catalyst for aromatization of hydrocarbons includes a molecular sieve catalyst and metal dehydrogenation catalyst present as discrete catalysts in a physical admixture. The molecular sieve catalyst can be a zeolite and the metal dehydrogenation catalyst can be in the form of a nanostructure, such as zinc oxide nanopowder. The catalyst can convert hydrocarbon feedstocks, such as alkanes and alkenes, to aromatics and can be regenerated in-situ.
Abstract:
A composite catalyst for aromatization of paraffins includes a molecular sieve catalyst and metal dehydrogenation catalyst present as discrete catalysts in a physical admixture. The molecular sieve catalyst can be a zeolite and the metal dehydrogenation catalyst can be in the form of a nanoctructure, such as zinc oxide nanopowder. The catalyst can convert feedstocks such as LPG to aromatics and can be regenerated in-situ.
Abstract:
Bicomponent fibers, methods of forming bicomponent fibers and articles formed from bicomponent fibers, are described herein. The bicomponent fibers generally include a sheath component and a core component, wherein the sheath component consists essentially of a first metallocene polypropylene and the core component consists essentially of a second metallocene polypropylene.
Abstract:
A method of preparing a high impact polystyrene comprising contacting styrene monomer, a high cis polybutadiene elastomer, and an initiator under high shear within a reaction zone. A high-impact polystyrene comprising a high cis polybutadiene elastomer. A method of preparing a high impact polystyrene comprising contacting styrene monomer, a high cis polybutadiene elastomer, and an initiator under extreme reaction conditions within a reaction zone.
Abstract:
Injection stretch blow molded (ISBM) articles containing a bio-based polymers and methods of forming the same are described herein. The method generally includes providing a propylene-based polymer; contacting the propylene-based polymer with polylactic acid to form a polymeric blend; injection molding the blend into a preform; and stretch-blowing the preform into an article.
Abstract:
Methods of forming ethylbenzene are described herein. In one embodiment, the method includes contacting dilute ethylene with benzene in the presence of an alkylation catalyst to form ethylbenzene, wherein such contact occurs in a liquid phase reaction zone and recovering ethylbenzene from the reaction zone.
Abstract:
A polyethylene may be prepared using a mixture of a silica supported catalyst and a magnesium chloride supported catalyst. By changing the ratio of the two catalysts, the polyethylene produced may have a varying bulk density and shear response. The method allows for the tuning or targeting of properties to fit a specific application, such as a blow molding or vapor barrier film.
Abstract:
It has been discovered that the properties of sheet or film materials of broad molecular weight distribution ethylene/propylene rubber impact-modified heterophasic copolymer (ICP) can be improved by blending the ICP with a second polyolefin. The second polyolefin may be a syndiotactic polypropylene (sPP), a random copolymer (RCP) of propylene and comonomer (e.g. ethylene and/or butene) made using a Ziegler-Natta or metallocene catalyst, medium density polyethylene (MDPE), linear low density polyethylene (LLDPE), or low crystalline copolymer of propylene/α-olefin. Improvements include, but are not necessarily limited to, reduced motor amps, lower secant modulus, increased dart drop strength, increased gloss, reduced haze, increased elongation to yield, elimination of stress whitening, improved puncture resistance, and decreased seal initiation temperature. This sheet of film materials may be co-extruded with other resins or laminated with other materials after extrusion.
Abstract:
A method for the oxidative coupling of hydrocarbons, such as the oxidative coupling of methane, includes providing an oxidative catalyst inside a reactor, and carrying out the oxidative coupling reaction under a set of reaction conditions. The oxidative catalyst includes (A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf); (B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5-15 of the periodic table; (C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba; and (D) oxygen.