Abstract:
Methods and systems are disclosed herein for a media guidance application configured to generate for display an icon that provides feedback to a user related to the current brain activity of the user. For example, a media guidance application may monitor the brain activity of the user in order to determine whether or not to perform a particular operation. The media guidance application may further generate a display of icons that inform the user of the current brain activity of the user and/or the progress of the user towards achieving a particular operation.
Abstract:
Methods and systems are disclosed herein for adjusting power consumption and/or sensitivity levels of a user device based on the current brain activity of a user. For example, a media guidance application implemented on a user device may monitor brain activity of a user. In response to determining particular brain activity (e.g., associated with the inactivity of the user), the media guidance application may initiate a stand-by mode in order to reduce power consumption.
Abstract:
An example system can monitor the stress and fatigue of a subject. The system can include a light source configured to direct illuminating light onto a face of the subject. The illuminating light can reflect off the face of the subject to form reflected light. The system can include collection optics that collect a portion of the reflected light and produce video-rate images of the face of the subject. The system can include an image processor configured to locate an eye in the video-rate images, extract fatigue signatures from the located eye, and determine a fatigue level of the subject, in part, from the fatigue signatures. The image processor can also be configured to locate a facial region away from the eye in the video-rate images, extract stress signatures from the located facial region, and determine a stress level of the subject from the stress signatures.
Abstract:
Disclosed is a biological body state assessment device capable of accurately assessing an absentminded state of a driver. The biological body state assessment device first acquires face image data of a face image capturing camera, detects an eye open time and a face direction left/right angle of a driver from face image data, calculates variation in the eye open time of the driver and variation in the face direction left/right angle of the driver, and performs threshold processing on the variation in the eye open time and the variation in the face direction left/right angle to detect the absentminded state of the driver. The biological body state assessment device assesses the possibility of the occurrence of drowsiness of the driver in the future using a line fitting method on the basis of an absentminded detection flag and the variation in the eye open time, and when it is assessed that there is the possibility of the occurrence of drowsiness, estimates an expected drowsiness occurrence time of the driver.
Abstract:
An eyeglass-type electroencephalogram interface system is worn on the head of a user. The system includes: an output section for presenting a visual stimulation to the user; an ear electrode portion disposed at a position coming in contact with an ear of the user when the system is worn; a facial electrode portion disposed at a position coming in contact with the face below a straight line connecting an external canthus and an internal canthus of an eye of the user, such that the mass of the system is supported at the position, when the system is worn; and an electroencephalogram measurement and determination section for measuring an event-related potential on the basis of a potential difference between the ear electrode portion and the facial electrode portion based on the visual stimulation being presented by the output section as a starting point.
Abstract:
Methods of assessing driver behavior include monitoring vehicle systems and driver monitoring systems to accommodate for a driver's slow reaction time, attention lapse and/or alertness. When it is determined that a driver is drowsy, for example, the response system may modify the operation of one or more vehicle systems. The systems that may be modified include: visual devices, audio devices, tactile devices, antilock brake systems, automatic brake prefill systems, brake assist systems, auto cruise control systems, electronic stability control systems, collision warning systems, lane keep assist systems, blind spot indicator systems, electronic pretensioning systems and climate control systems.
Abstract:
Methods of assessing driver behavior include monitoring vehicle systems and driver monitoring systems to accommodate for a driver's slow reaction time, attention lapse and/or alertness. When it is determined that a driver is drowsy, for example, the response system may modify the operation of one or more vehicle systems. The systems that may be modified include: visual devices, audio devices, tactile devices, antilock brake systems, automatic brake prefill systems, brake assist systems, auto cruise control systems, electronic stability control systems, collision warning systems, lane keep assist systems, blind spot indicator systems, electronic pretensioning systems and climate control systems.
Abstract:
A method and system for detecting and removing EEG artifacts is disclosed herein. Each source of a plurality of sources for an EEG signal is separated for a selected artifact type. Each source of the plurality of sources is reconstituted into a recorded montage and an optimal reference montage for recognizing the selected artifact type of each source. The sources with artifacts are removed and the remaining sources are reconstituted into a filtered montage for the EEG signal.
Abstract:
The present application discloses a method and device of detecting fatigue driving, comprising: analyzing an eye image in the driver's eye image area with a rectangular feature template to obtain the upper eyelid line; determining the eye closure state according to the curvature or curvature feature value of the upper eyelid line; and collecting statistics on the eye closure state and thereby determining whether the driver is in a fatigue state. The present application determines whether the eyes are opened or closed according to the shape of the upper eyelid, which is more accurate because the upper eyelid line has characteristics of higher relative contrast, anti-interference capacity, and adaptability to the changes in the facial expression.
Abstract:
Methods of assessing driver behavior include monitoring vehicle systems and driver monitoring systems to accommodate for a driver's slow reaction time, attention lapse and/or alertness. When it is determined that a driver is drowsy, for example, the response system may modify the operation of one or more vehicle systems. The systems that may be modified include: visual devices, audio devices, tactile devices, antilock brake systems, automatic brake prefill systems, brake assist systems, auto cruise control systems, electronic stability control systems, collision warning systems, lane keep assist systems, blind spot indicator systems, electronic pretensioning systems and climate control systems.