Abstract:
A method of destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500.degree. C. to heat the particulate material to a temperature in the range of from about 200.degree. C. to about 900.degree. C. in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.
Abstract:
A furnace includes a decomposition chamber configured to form a fire pit for controlled decomposition of combustible waste material, a preheat chamber connected to and located generally above the decomposition chamber, and an afterburn chamber operably connected to an outlet on the decomposition chamber. The decomposition chamber includes an inlet for allowing controlled input of air to the decomposition chamber to create an oxygen-starved environment. The outlet is positioned generally opposite the inlet on the decomposition chamber and adjacent the fire pit such that the gases from the preheat chamber and the decomposition chamber flow generally across the decomposition chamber and through the burning/decomposing waste materials in the fire pit. The afterburn chamber chamber operates with a vacuum such that the gases and vapors from the preheat chamber and the decomposition chamber are drawn through the fire pit such that they are treated by the hot decomposing matter in the fire pit. A heat exchanger and roaster are operably connected to the exhaust of the afterburn chamber. An input mechanism for controlling input of chopped waste materials is connected to the preheat chamber.
Abstract:
In a hydrocarbon release rate controlling method, a first chamber is provided capable of receiving successive batches of feed materials for thermal processing having widely varying energy content, heating is produced in the first chamber to cause pyrolyzing of the feed materials into fluid materials, a second chamber is provided communicating with the first chamber and capable of receiving the fluid materials from the first chamber and communicating the fluid materials to a discharge location, heating is produced in the second chamber to cause oxidizing of the fluid materials into discharge gases reaching the discharge location, a jacketed vessel is provided defining a channel surrounding the first and second chambers containing a flow of coolant fluid through the channel, separate variable flows of primary and secondary air are respectively produced into and through the first and second chambers, the temperatures in the first and second chambers are sensed, the temperature of the coolant in the channel of the jacketed vessel is sensed, the concentration of a preselected gas in the discharge gases is sensed, and, in response to the temperatures sensed in the first and second chambers and jacketed vessel channel coolant and in response to the concentration of the preselected gas sensed in the discharge gases, the primary and secondary flows of air into the first and second chambers are controlled so as to proportion and vary the respective amounts thereof and thereby maintain the concentration of the preselected gas in the discharge gases at a preset target level corresponding with the generation of harmless discharge gases and production of carbon-free residue ash.
Abstract:
Method and apparatus for treating waste materials to produce aggregates wherein pellets comprised of a mixture of solids, liquid wastes and clay are dried by hot air in a dryer. The pellets are then fed to the pyrolysis zone of a rotary kiln wherein they are heated by hot gas from an oxidation zone of the kiln to drive off most of the volatile gases. Remaining volatile gases and the fixed carbon in the waste are oxidized in the oxidation zone, and the silicates in the clay are vitrified in a vitrification zone of the kiln to produce aggregates which are crushed and screened. Volatile gases given off from the pyrolysis zone are mixed with exhaust gases from the dryer to feed the burner for the vitrification zone and to supply oxygen to the oxidation zone.
Abstract:
A solid waste disposal unit having a lower, pyrolyzing chamber and an upper, oxidizing chamber separated by a movable plate. Waste is deposited in the lower chamber. The chambers are rotated to move the plate to a first position which seals the lower chamber from the entrance of air. While the chambers continue to rotate, a pair of heaters separately heats the chambers. The waste in the lower chamber is pyrolyzed in the absence of air and gives off a combustible vapor that in turn is oxidized in the upper chamber. A plurality of venturi jets, mounted in the movable plate, mix the vapor with air as the vapor passes into the upper chamber. Additional air is introduced into the upper chamber through a rotating regenerative heat exchanger recovering heat from the exhaust gases. After the waste is thoroughly pyrolyzed into a char, the rotation of the unit is reversed causing the movable plate to rotate into a new position wherein air is permitted to enter the lower chamber to cause oxidation of the char. This oxidation process continues until the char is entirely consumed and reduced to a sterile ash. Any gaseous products produced will continue to be oxidized in both chambers.
Abstract:
Method and apparatus for treating waste materials to produce aggregates wherein pellets comprised of a mixture of solids, liquid wastes and clay are dried by hot air in a dryer. The pellets are then fed to the pyrolysis zone of a rotary kiln wherein they are heated by hot gas from an oxidation zone of the kiln to drive off most of the volatile gases. Remaining volatile gases and the fixed carbon in the waste are oxidized in the oxidation zone, and the silicates in the clay are vitrified in a vitrification zone of the kiln to produce aggregates which are crushed and screened. Volatile gases given off from the pyrolysis zone are mixed with exhaust gases from the dryer to feed the burner for the vitrification zone and to supply oxygen to the oxidation zone.
Abstract:
A waste incinerator, in a vertical structure and including from the top down: a drying section, a destructive distillation section, a reduction section, and a combustion section. The combustion section includes: two layers of grate bars, a first combustion layer, a second combustion layer, and a third combustion layer. The heat produced from the combustion in the combustion section is used to heat the carbide in the reduction section. The heated carbide reduces CO2 produced in the combustion into CO (coal gas). The coal gas ascends to the destructive distillation section through the ambient coal gas chamber to heat and destructively distillate the waste to produce the pyrogenic coal gas and the carbide. The carbide drops to the combustion section for combustion, and the pyrogenic coal gas and the coal gas are collected by the draft fan.
Abstract:
A system for incinerating bio-hazardous waste includes a chamber having there within a hydrocarbon feedstock and a plurality of electrodes between which an electric arc is formed, producing an arc-based gas. The system includes at least one primary combustion chamber in which an amount of bio-hazardous waste is incinerated. A source of combustion is interfaced to each of the at least one primary combustion chambers, thereby providing heat and ignition to the bio-hazardous waste. A secondary combustion chamber accepts fumes from the at least one primary combustion chamber and combines the fumes with the arc-formed gas and then the fumes mixed with the arc-formed gas are combusted.
Abstract:
An apparatus including at least one seal pot having at least one penetration through a surface other than the top of the seal pot, each of the at least one penetrations being configured for introduction, into the at least one seal pot, of solids from a separator upstream of the at least one seal pot; a substantially non-circular cross section; or both at least one penetration through a surface other than the top of the seal pot and a substantially non-circular cross section.