Abstract:
Electron beam is irradiated to a wafer in the midst of steps at predetermined intervals by a plurality of times under a condition in which a junction becomes rearward bias and a difference in characteristic of a time period of alleviating charge in the rearward bias is monitored. As a result, charge is alleviated at a location where junction leakage is caused in a time period shorter than that of a normal portion and therefore, a potential difference is produced between the normal portion and a failed portion and is observed in a potential contrast image as a difference in brightness. By consecutively repeating operation of acquiring the image, executing an image processing in real time and storing a position and brightness of the failed portion, the automatic inspection of a designated region can be executed. Information of image, brightness and distribution of the failed portion is preserved and outputted automatically after inspection.
Abstract:
A method for implanting negative hydrogen ions includes the following steps. Plasma containing hydrogen is generated. Negative hydrogen ions are generated in the plasma. An electric field is formed between the plasma and a substrate. Negative hydrogen ions from the plasma is accelerated by using the electric field so as to implant negative hydrogen ions into a predetermined depth of a substrate.
Abstract:
A scanned image to be observed or to be recorded is formed by a plurality of two-dimensional scanning times (N times), an irradiating charged particle beam or a light beam is blanked in a two-dimensional scanning unit, and the averaged irradiation intensity is adjusted by thinning a plurality (
Abstract:
The present invention is directed to a low-energy (0 to 100 keV) or high-energy (1 to 4 MeV) single ion implantation system in which single ions are extracted from a focused ion beam or micro-ion beam by beam chopping. The low-energy single ion implantation system has, in combination with a focused ion beam system, an electrostatic deflector for beam chopping (20), an aperture for single ion extraction (21) and an electrode (35) for generating a retarding electric field to make the single ion soft-land on a specimen. The high-energy single ion implantation system has, in combination with an ion microprobe, a Cs sputter source (33) which enables dopant ion implantation and high LET ion irradiation. The single ion implantation method includes a step of implanting the extracted single ions from the both systems into the specimen at a predetermined target position with aiming accuracies of 50 nm.phi. and 1.5 .mu.m.phi., respectively.
Abstract:
The present invention concerns an ion irradiation system and has for its object to provide an ion irradiation system and method which enable one or more ions to be applied to a target point with high accuracy. The ion irradiation system according to the present invention comprises: an ion microprobe; a deflector for deflecting an ion microbeam generated by said ion microprobe; a micro slit for extracting a single or predetermined number of ions from said ion microbeam deflected by said deflector; a sample holder mechanism for holding a sample to be irradiated with said single or predetermined number of ions extracted through said micro slit; a scanning electron microscope mechanism for observing the surface of said sample in real time; a secondary electron detecting system for detecting secondary electrons which are emitted from the surface of said sample, said secondary electron detecting system including a secondary electron multiplier; and an electric field control circuit for controlling an electric field which is applied to said deflector, said electric field control circuit being composed of a clock generator, a counter connected to said clock generator and a high-voltage amplifier connected to said counter and having its output connected to said deflector; wherein said counter counts output signal pulses from said secondary electron multiplier and supplies a clock signal to said high-voltage amplifier of said electric field control circuit during counting of said single or predetermined number of ions and stops the supply of said clock signal to said high-voltage amplifier upon completion of counting of said single or predetermined number of ions, whereby said ion microbeam is chopped by said deflector one or more times instantaneously reverse its direction or deflection with respect to said micro slit, thereby extracting said single or predetermined number of ions through said micro slit.
Abstract:
The invention relates to a method of and device for producing any desired patterns on a target. The irradiating beam is modulated over the entire cross-sectional area by an electro-magnetic field, which is obtained by a line or two-dimensionally shaped electrode grid, each individual electrode of which can be differently charged and which reflects the irradiation beam or produces a respective strip.
Abstract:
Complex and fine patterns may be formed by an exposure apparatus that decreases movement error of a stage including a beam generating section that generates a charged particle beam, a stage section that has a sample mounted thereon and moves the sample relative to the beam generating section, a detecting section that detects a position of the stage section, a predicting section that generates a predicted drive amount obtained by predicting a drive amount of the stage section based on a detected position of the stage section, and an irradiation control section that performs irradiation control for irradiating the sample with the charged particle beam, based on the predicted drive amount.
Abstract:
In one embodiment, a charged particle beam drawing apparatus deflects a charged particle beam with a deflector to draw a pattern. The apparatus includes a storage unit that stores an approximate formula indicating a correspondence relationship between a settling time for a DAC amplifier that controls the deflector, and a position shift amount, from a design position, of a drawn position of each evaluation pattern drawn on a first substrate while the settling time and an amount of deflection by the deflector are changed, a shot position correction unit that creates a correction formula indicating a relationship between an amount of deflection and a shot position shift amount at the settling time, from the approximate formula and the settling time for the DAC amplifier based on an amount of deflection of a shot, obtains a position correction amount by using the amount of deflection of the shot and the correction formula, and corrects a shot position defined by the shot data based on the position correction amount, and a drawing unit that performs drawing by using the shot data with a corrected shot position.
Abstract:
A blanking device for multi-beams includes arrayed plural separate blanking systems, each performing blanking control switching a corresponding beam of multi charged particle beams between a beam ON state and a beam OFF state and each including a first electrode, a first potential applying mechanism applying two different potentials selectively to the first electrode for the blanking control, and a second electrode performing blanking deflection of the corresponding beam, the second electrode being grounded and paired with the first electrode, and a potential change mechanism changing a potential of the second electrode from a ground potential to another potential, wherein when a potential of the first electrode included in one of the separate blanking systems is fixed to the ground potential, the potential change mechanism changes the potential of the second electrode corresponding to the first electrode fixed to the ground potential, from the ground potential to the another potential.
Abstract:
An object of the present invention is to realize both of the accuracy of measuring the amount of secondary electron emissions and the stability of a charged particle beam image in a charged particle beam device. In a charged particle beam device, extraction of detected signals is started by a first trigger signal, the extraction of the detected signals is completed by a second trigger signal, the detected signals are sampled N times using N (N is a natural number) third trigger signals that equally divide an interval time T between the first trigger signal and the second trigger signal, secondary charged particles are measured by integrating and averaging the signals sampled in respective division times ΔT obtained by equally dividing the interval time T, and the division time ΔT is controlled in such a manner that the measured number of secondary charged particles becomes larger than the minimum number of charged particles satisfying ergodicity.