Abstract:
A three-dimensional thin-film solar cell comprising a three-dimensional thin-film solar cell substrate having a prism array design comprising a plurality dual-aperture unit cells with emitter junction regions and doped base regions. The three-dimensional thin-film solar cell comprises emitter metallization regions and base metallization regions.
Abstract:
Disclosed are three-layer core-shell structure nanoparticles used to form a light absorption layer of solar cells including a core including a copper (Cu)-containing chalcogenide, and (i) a first shell including a tin (Sn)-containing chalcogenide and a second shell including a zinc (Zn)-containing chalcogenide; or (ii) a first shell including a zinc (Zn)-containing chalcogenide and a second shell including a tin (Sn)-containing chalcogenide, and a method of manufacturing the same.
Abstract:
Described herein are devices operable to detect various portions of radiation incident on a receiving area of the device, systems incorporating the same, methods of using and methods of manufacturing thereof. Such a device comprises a substrate; at least one first feature; and at least one second feature, both extending substantially perpendicularly from the substrate. The at least one first feature and the at least second feature are operable to selectively absorb various portions of the radiation defined by their respective ranges of wavelengths. The at least one first feature and the at least one second feature are positioned on the substrate such that at least 50% of the first portion and at least 50% of the second portion of the radiation incident on the receiving area is selectively absorbed by the at least one first feature and the at least one second feature, respectively.
Abstract:
A back contact back junction thin-film solar cell is formed on a thin-film semiconductor solar cell. Preferably the thin film semiconductor material comprises crystalline silicon. Base regions, emitter regions, and front surface field regions are formed through ion implantation and annealing processes.
Abstract:
Provided are a solar cell and a method of fabricating the same. The solar cell includes: a substrate; a back electrode layer on the substrate; a light absorbing layer on the rear electrode layer; a window layer on the light absorbing layer; a plurality of beads in the light absorbing layer; and a trap layer on each surface of the plurality of beads.
Abstract:
The laser patterning methods utilizing a laser absorbent hard mask in combination with wet etching to form patterned solar cell doped regions which may further improve cell efficiency by completely avoiding laser ablation of an underlying semiconductor substrate associated with ablation of an overlying transparent passivation layer.
Abstract:
A photovoltaic device operable to convert light to electricity, comprising a substrate, a plurality of structures essentially perpendicular to the substrate, one or more recesses between the structures, each recess having a planar mirror on a bottom wall thereof and each recess filled with a transparent material. The structures have p-n or p-i-n junctions for converting light into electricity. The planar mirrors function as an electrode and can reflect light incident thereon back to the structures to be converted into electricity.
Abstract:
Methods of fabricating solar cell emitter regions using silicon nano-particles and the resulting solar cells are described. In an example, a method of fabricating an emitter region of a solar cell includes forming a region of doped silicon nano-particles above a dielectric layer disposed above a surface of a substrate of the solar cell. A layer of silicon is formed on the region of doped silicon nano-particles. At least a portion of the layer of silicon is mixed with at least a portion of the region of doped silicon nano-particles to form a doped polycrystalline silicon layer disposed on the dielectric layer.
Abstract:
An infrared sensor device includes at least one sensor element formed in a semiconductor substrate, an SOI wafer that defines a gap below and around the sensor element, and a suspension device that is configured to suspend the sensor element in the SOI wafer. The sensor element is substantially arranged below the suspension device, thereby achieving a high sensitivity, low thermal capacity, low thermal coupling to the substrate and a high image refresh rate.
Abstract:
In a fiber there is provided a fiber matrix material having a fiber length; and an array of isolated in-fiber filaments that extend the fiber length. The in-fiber filaments are disposed at a radius in a cross section of the fiber that is a location of a continuous filament material layer in a drawing preform of the fiber. As a result, there is provided a fiber matrix material having a fiber length; and a plurality of isolated fiber elements that are disposed in the fiber matrix, extending the fiber length, where the plurality is of a number greater than a number of isolated domains in a drawing preform of the fiber.