Abstract:
An equalizer assembly for compensating transmission losses of electronic communication signals includes a circuit board and a first equalizer and a second equalizer. Two input pins of each equalizer are parallel to each other. The input pins of the first equalizer are perpendicular to the input pins of the second equalizer.
Abstract:
A touch-sensitive device includes a transparent substrate, a touch-sensing structure, a decorative layer, a trace layer, a passivation layer and a sheltering layer. The touch-sensing structure is disposed on the transparent substrate and located in a touch-sensitive region. The decorative layer is disposed on the transparent substrate and located in a non-touch-sensitive region, and the trace layer is disposed on the decorative layer. The passivation layer is disposed on the transparent substrate and at least covers the touch-sensing structure and the trace layer. The sheltering layer is disposed at least on the passivation layer and located in the non-touch-sensitive region.
Abstract:
Fabrics with a multi-layered circuit of high reliability and a manufacturing method thereof are provided. The fabrics with the multi-layered circuit include: a base layer; a first conductive pattern which is formed on the base layer; a second conductive pattern which is formed to intersect with the first conductive pattern at least in part; and an insulating pattern which is formed on an intersection portion which is a region where the first conductive pattern and the second conductive pattern intersect.
Abstract:
A suspension includes a positive write trace and a negative write trace. The positive write trace is separated into at least two positive write trace sections located at two different layers respectively, and the negative write trace is separated into at least two negative write trace sections located at two different layers respectively. Each positive write trace section and each negative write trace section are alternately arranged along a longitudinal direction on two different layers, and the positive write trace sections at different layers are connected together via conductive crossovers, and the negative write trace sections are connected together via conductive crossovers. The present invention can obtain balanced propagation time in the stacked trace structure to reduce signal distortion, and obtain widened frequency bandwidth.
Abstract:
The present disclosure relates to a telecommunications jack including a housing having a port for receiving a plug. The jack also includes a plurality of contact springs adapted to make electrical contact with the plug when the plug is inserted into the port of the housing, and a plurality of wire termination contacts for terminating wires to the jack. The jack further includes a circuit board that electrically connects the contact springs to the wire termination contacts. The circuit board includes a multi-zone crosstalk compensation arrangement for reducing crosstalk at the jack.
Abstract:
An apparatus is provided. The apparatus generally comprises a plurality of pairs of differential transmission lines. The plurality of pairs of differential transmission lines includes a set of pairs of differential transmission lines with each pair of differential transmission lines from the set of pairs of differential transmission lines including at least one twist to alternate current direction. Also, the plurality of differential transmission lines are arranged such that alternating current directions substantially eliminate cross-talk across the plurality of pairs of differential transmission lines.
Abstract:
A configuration for routing electrical signals between a conventional electronic integrated circuit (IC) and an opto-electronic subassembly is formed as an array of signal paths carrying oppositely-signed signals on adjacent paths to lower the inductance associated with the connection between the IC and the opto-electronic subassembly. The array of signal paths can take the form of an array of wirebonds between the IC and the subassembly, an array of conductive traces formed on the opto-electronic subassembly, or both.
Abstract:
The present disclosure relates to a telecommunications jack including a housing having a port for receiving a plug. The jack also includes a plurality of contact springs adapted to make electrical contact with the plug when the plug is inserted into the port of the housing, and a plurality of wire termination contacts for terminating wires to the jack. The jack further includes a circuit board that electrically connects the contact springs to the wire termination contacts. The circuit board includes a multi-zone crosstalk compensation arrangement for reducing crosstalk at the jack.
Abstract:
A method of connecting circuit boards capable of easily accomplishing the connection maintaining reliability. A method of connection comprising the steps of obtaining a laminated body of a first circuit board, an adhesive sheet and a second circuit board, and accomplishing electric conduction between the first circuit and the second circuit by applying heat and pressure to the laminated body of the first circuit board, the adhesive sheet and the second circuit board, wherein an end of the circuit formed on at least either the first circuit board or the second circuit board is terminated at a position separated away from an end of the substrate, and the adhesive of the adhesive sheet is partly arranged between the end of the substrate of the circuit board and the end of the circuit so as to be adhered to the opposing circuit board.
Abstract:
A signaling system is disclosed. The system includes a transmitter comprising an encoder to encode a data signal such that the encoded data signal has a balanced number of logical 1s and 0s. The system also includes a receiver having a decoder to decode the encoded data signal, and a link. The link is coupled between the transmitter and the receiver to route the encoded data signal. The link comprises three or more conductive lines that are routed along a path in parallel between the encoder and the decoder, and wherein the link comprises segments, each segment comprising a routing change to reorder proximity of at least one pair of lines relative to any adjacent segment, with a sufficient number of segments such that each line has each of the other lines of the link as a nearest neighbor over at least a portion of the path.