Abstract:
Methods for forming a semiconductor device are provided. In one embodiment, a gate structure having a gate insulating layer and a gate electrode structure formed on the gate insulating layer is provided. The methods provide reducing a dimension of the gate electrode structure relative to the gate insulating layer along a direction extending in parallel to a direction connecting the source and drain. A semiconductor device structure having a gate structure including a gate insulating layer and a gate electrode structure formed above the gate insulating layer is provided, wherein a dimension of the gate electrode structure extending along a direction which is substantially parallel to a direction being oriented from source to drain is reduced relative to a dimension of the gate insulating layer. According to some examples, gate structures are provided having a gate silicon length which is decoupled from the channel width induced by the gate structure.
Abstract:
The present invention relates to a semiconductor structure comprising at least a first and a second three-dimensional transistor, wherein the first transistor and the second transistor are electrically connected in parallel to each other, and wherein each transistor comprises a source and a drain, wherein the source and/or drain of the first transistor is at least partially separated from, respectively, the source and/or drain of the second transistor. The invention further relates to a process for realizing such a semiconductor structure.
Abstract:
A method to implant dopants onto fin-type field-effect-transistor (FINFET) fin surfaces with uniform concentration and depth levels of the dopants and the resulting device are disclosed. Embodiments include a method for pulsing a dopant perpendicular to an upper surface of a substrate, forming an implantation beam pulse; applying an electric or a magnetic field to the implantation beam pulse to effectuate a curvilinear trajectory path of the implantation beam pulse; and implanting the dopant onto a sidewall surface of a target FINFET fin on the upper surface of the substrate via the curvilinear trajectory path of the implantation beam pulse.
Abstract:
A semiconductor device includes a semiconductor material positioned above a substrate and a gate structure positioned above a surface of the semiconductor material, the gate structure covering a non-planar surface portion of the surface. A sidewall spacer is positioned adjacent to the gate structure and includes first dopants having one of an N-type and a P-type conductivity, wherein the sidewall spacer covers an entire sidewall surface of the gate structure and partially covers the surface of the semiconductor material. Source/drain extension regions that include the first dopants are positioned within the non-planar surface portion and in alignment with the sidewall spacer, wherein a concentration of the first dopants within a portion of the sidewall spacer proximate the non-planar surface portion substantially corresponds to a concentration of the first dopants within the source/drain extension regions proximate the non-planar surface portion.
Abstract:
The present disclosure provides in one aspect for a semiconductor device structure which may be formed by providing source/drain regions within a semiconductor substrate in alignment with a gate structure formed over the semiconductor substrate, wherein the gate structure has a gate electrode structure, a first sidewall spacer and a second sidewall spacer, the first sidewall spacer covering sidewall surfaces of the gate electrode structure and the sidewall spacer being formed on the first sidewall spacer. Furthermore, forming the semiconductor device structure may include removing the second sidewall spacer so as to expose the first sidewall spacer, forming a third sidewall spacer on a portion of the first sidewall spacer such that the first sidewall spacer is partially exposed, and forming silicide regions in alignment with the third sidewall spacer in the source/drain regions.
Abstract:
The present disclosure provides a method of forming a semiconductor device structure with selectively fabricating semiconductor device structures having fully silicided (FuSi) gates and partially silicided gates. In aspects of the present disclosure, a semiconductor device structure with a first semiconductor device and a second semiconductor device is provided, wherein each of the first and second semiconductor devices includes a gate structure over an active region, each of the gate structures having a gate electrode material and a gate dielectric material. The gate electrode material of the first semiconductor device is recessed, resulting in a recessed first gate electrode material which is fully silicided during a subsequent silicidation process. On the gate electrode material of the second semiconductor device, a silicide portion is formed during the silicidation process.
Abstract:
A method includes forming a plurality of fins in a semiconductor substrate using a common patterning process. A conductive layer is formed above the plurality of fins. A mask is formed above the conductive layer. The conductive layer is etched using the mask to define trenches in the conductive layer. A first insulating layer is formed above the conductive layer and in the trenches. First and second contacts are formed connected to respective ends of the conductive layer.
Abstract:
A method disclosed herein includes providing a substrate including a semiconductor material. A first area of the substrate is recessed relative to a second area of the substrate, and an active region of a first transistor is formed in the recessed area. An active region of a second transistor is formed in the second area of the substrate. First and second dummy gate structures are formed over the active regions of the first transistor and the second transistor, respectively. At least a portion of the first and second dummy gate structures is replaced with at least a portion of a gate structure of the first transistor and the second transistor, respectively. The gate structure of the first transistor includes a ferroelectric material, and the gate structure of the second transistor does not include a ferroelectric material.
Abstract:
Integrated circuits having improved contacts and improved methods for fabricating integrated circuits having contacts are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate with a source/drain region. The method deposits an interlayer dielectric material over the semiconductor substrate. Further, the method etches the interlayer dielectric material to form a hole defining an exposed portion of the source/drain region. The method includes forming a contact forming a contact in the hole over the exposed portion of the source/drain region and forming an interconnect in the hole over the contact.
Abstract:
When forming semiconductor devices including transistors with different threshold voltages, the different threshold voltages of transistors of the same conductivity type are substantially defined by performing different halo implantations. As the other implantations performed typically in the same manufacturing step, such as pre-amorphization, source and drain extension implantation and extra diffusion engineering implantations, may be identical for different threshold voltages, these implantations, in addition to a common halo base implantation, may be performed for all transistors of the same conductivity type in a common implantation sequence. Higher threshold voltages of specific transistors may be subsequently achieved by an additional low-dose halo implantation while the other transistors are covered by a resist mask. Thus, the amount of atoms of the implant species in the required resist masks is reduced so that removal of the resist masks is facilitated. Furthermore, the number of implantation steps is decreased compared to conventional manufacturing processes.