摘要:
The present invention is ceramic matrix composite gas turbine engine component comprising a plurality of cured ceramic matrix composite plies, each ply comprising ceramic fiber tows, each ceramic fiber tow comprising a plurality of ceramic fibers, the tows in each ply lying adjacent to one another such that each ply has a unidirectional orientation. The component further comprises a layer of a coating on the ceramic fibers. The component further comprises a ceramic matrix material lying in interstitial regions between the fibers and tows of each ply and the interstitial region between the plurality of plies, wherein at least a portion of the component is no greater than about 0.021 inch thick. The present invention is also a method for making such a ceramic matrix composite component.
摘要:
A honeycomb structure includes at least one honeycomb unit a NOx occluding catalyst and a noble metal catalyst. The at least one honeycomb unit includes inorganic particles and an inorganic binder and has a plurality of cell walls extending from one end face to another end face of the at least one honeycomb unit along a longitudinal direction of the at least one honeycomb unit to define a plurality of cells. The NOx occluding catalyst and the noble metal catalyst are provided at the plurality of cell walls. An amount of the noble metal catalyst provided on a surface of at least one of the plurality of cell walls is greater than an amount of the noble metal catalyst provided in a center part along a thickness of the at least one of the plurality of cell walls.
摘要:
An insulating material 14 adapted for use in a high temperature environment for coating a turbine component is provided. The insulating material comprises a plurality of geometric shapes 18. The insulating material further comprises a binder for binding together the geometric shapes. A plurality of discontinuous fibers is added to the binder. The discontinuous fibers are adapted to controllably affect one or more properties of the insulating material. For example, non-fugitive chopped fibers 50 may be added to affect a tensile strength property of the insulating material, and fugitive chopped fibers 52 may be added to affect a density property of the insulating material.
摘要:
A thin, flexible, porous ceramic composite (PCC) film useful as a separator for a molten-salt thermal battery comprises 50% to 95% by weight of electrically non-conductive ceramic fibers comprising a coating of magnesium oxide on the surface of the fibers in an amount in the range of 5% to 50% by weight. The ceramic fibers comprise Al2O3, AlSiO2, BN, AlN, or a mixture of two or more of the foregoing; and the magnesium oxide coating interconnects the ceramic fibers providing a porous network of magnesium oxide-coated fibers having a porosity of not less than 50% by volume. The pores of the film optionally can include a solid electrolyte salt. A laminated electrode/PCC film combination is also provided, as well as a thermal battery cell comprising the PCC film as a separator.
摘要:
Thermostructural composite structure having a compositional gradient, formed from a porous core (5) made of a refractory having a pore volume content of greater than or equal to 80%. The core (5) lies between two intermediate layers (6a, 6b) comprising the carbon fiber reinforcement, densified by a matrix composed of the carbon phase and of a ceramic phase, and a refractory solid filler. Two monolithic ceramic shells (7a, 7b) cover the intermediate layers in order to give stiffness to the entire structure.
摘要:
A method of manufacturing a turbine engine component comprising the steps of providing and laying up a plurality of ceramic plies comprising woven ceramic fiber tows to form a turbine engine component shape, inserting a plurality of tows of oxidizable fugitive fibers into the component shape, such that each fugitive fiber tow passes through a preselected number of ceramic plies, burning off the fugitive fiber tows, the burning producing through-thickness void regions, rigidizing the component shape with a layer of BN and a layer of SiC to form a coated component preform using chemical vapor infiltration, and partially densifying the coated component preform using carbon-containing slurry and filling the through thickness void regions, and further densifying the coated component preform with at least silicon to form a ceramic matrix composite turbine engine component with in-situ ceramic matrix plugs formed where the through-thickness void regions were located.
摘要:
A method is provided for producing a highly porous substrate. More particularly, the present invention enables fibers, such as organic, inorganic, glass, ceramic, polymer, or metal fibers, to be combined with binders and additives, and extruded, to form a porous substrate. Depending on the selection of the constituents used to form an extrudable mixture, the present invention enables substrate porosities of about 60% to about 90%, and enables process advantages at other porosities, as well. The extrudable mixture may use a wide variety of fibers and additives, and is adaptable to a wide variety of operating environments and applications. Additives can be selected that form inorganic bonds between overlapping fibers in the extruded substrate that provide enhanced strength and performance of the porous substrate in a variety of applications, such as, for example, filtration and as a host for catalytic processes, such as catalytic converters.
摘要:
Within the pores of a porous thermostructural composite material, there is form an aerogel or xerogel made up of a precursor for a refractory material, the precursor is transformed by pyrolysis to obtain an aerogel or xerogel of refractory material, and then it is silicided by being impregnated with a molten silicon type phase. The aerogel or xerogel is formed by impregnating the composite material with a composition containing at least one organic, organometalloid, or organometallic compound in solution, followed by in situ gelling. The method is applicable to improving the tribological properties or the thermal conductivity of C/C or C/SiC composite material parts, or to making such parts leakproof.
摘要:
A flexible insulation blanket having a ceramic matrix composite (CMC) outer layer, and a method of producing a flexible insulation blanket having a smooth, aerodynamically suitable, outer surface by infiltrating ceramic material within the outer ceramic fabric layer of the flexible insulation blanket and curing the ceramic material to form a CMC layer. The CMC layer is cured while the blanket is under compression such that the resulting CMC layer has a smooth surface.
摘要:
A fibrous silicon carbide substrate is disclosed that is formed from a reaction between carbon fibers and silicon additives, to provide in-situ silicon carbide fibers. The fibrous structure is formed from a paper-making process of carbon or organic fibers that form a plurality of lamination members. The lamination members, each having a plurality of through holes, that when aligned in a lamination direction, form a honeycomb array of channels. The lamination members can be adapted into a wall-flow configuration for use in filtration of the exhaust of internal combustion engines.