Abstract:
Provided circuit modules employ flexible circuitry populated with integrated circuitry (ICs). The flex circuitry is disposed about a rigid substrate. Contacts distributed along the flexible circuitry provide connection between the module and an application environment. A strain relief portion of the flex circuitry has preferably fewer layers than the portion of the flex circuitry along which the integrated circuitry is disposed and may further may exhibit more flexibility than the portion of the flex circuit populated with integrated circuitry. The substrate form is preferably devised from thermally conductive materials.
Abstract:
Multiple DIMM circuits or instantiations are presented in a single module. In some embodiments, memory integrated circuits (preferably CSPs) and accompanying AMBs, or accompanying memory registers, are arranged in two ranks in two fields on each side of a flexible circuit. The flexible circuit has expansion contacts disposed along one side. The flexible circuit is disposed about a supporting substrate or board to place one complete DIMM circuit or instantiation on each side of the constructed module. In alternative but also preferred embodiments, the ICs on the side of the flexible circuit closest to the substrate are disposed, at least partially, in what are, in a preferred embodiment, windows, pockets, or cutaway areas in the substrate. Other embodiments may only populate one side of the flexible circuit or may only remove enough substrate material to reduce but not eliminate the entire substrate contribution to overall profile. The flexible circuit may exhibit one or two more conductive layers, and may have changes in the layered structure of have split layers. Other embodiments may stagger or offset the ICs or include greater numbers of ICs.
Abstract:
An electrical power tool may include a switching device capable of controlling output power of a motor, a circuit board supporting the switching device, and a metal case receiving the circuit board. The switching device includes a conductive part and an insulated portion that is covered by an insulating covering material. The conductive part of the switching device contacts the circuit board The insulated portion of the switching device contacts the metal case via the insulating covering material.
Abstract:
The present invention relates to a substantially package-like discrete electronic component of the type comprising a power electronic circuit, a body or casing, substantially parallelepiped, and electric connecting pins connected inside the body with said circuit and projecting from said body for an electric connection on the electronic printed circuit board. The body has a heat dissipating header having at least one surface emerging from the body and laying on a plane whereas the pins project from the body for a first section initially extended parallel to the plane. Advantageously a pair of pins has a substantially U-shaped bending, after the first section parallel to the plane for allowing a more stable bearing of the component during the step of welding to a heat dissipating intermediate die.
Abstract:
A semiconductor device according to a preferred embodiment of the present invention is a semiconductor device including a main substrate and one or more sub substrates, and the semiconductor device includes first heat generating devices mounted on the sub substrates, sub-substrate heatsinks mounted to the first heat generating devices, and a main-substrate heatsink mounted to the main substrate, wherein the sub-substrate heatsinks and the main-substrate heatsink are secured to each other, such that there is a predetermined positional relationship between the sub substrates and the main substrate.
Abstract:
A circuit module is provided in which at least one secondary substrate and preferably two such secondary substrates are populated with integrated circuits (ICs). A rigid core substrate for the circuit module is comprised of a structural member and a connective member. In a preferred embodiment, the structural member is comprised of thermally conductive material while the connective member is comprised of conventional PWB material. The secondary substrate(s) are connected to the connective member with a variety of techniques and materials while, in a preferred embodiment, the connective member exhibits, in a preferred embodiment, traditional module contacts which provide an edge connector capability to allow the module to supplant traditional DIMMs.
Abstract:
An electronic apparatus includes an electrical load and a flexible wiring member, on which a circuit element is mounted, and which transmits a signal from an external signal source to the electrical load via the circuit element, by a plurality of electroconductive wires. The flexible wiring member is a band-shaped member, and on one surface of the flexible wiring member, an output electrode for connecting to the electrical load is formed in an area facing the electrical load and a connecting electrode for mounting the circuit element is formed in a drawing area in which the electroconductive wires are drawn from the electrical load. An opening is formed in the drawing area and the flexible wiring member is folded such that the circuit element is exposed, through the opening to a side of the other surface of the flexible wiring member.
Abstract:
An improved process for assembling a plurality of power packages and a thermal heat sink to a printed circuit board involves securing the power packages to the heat sink before soldering the electrical leads of the power packages to the printed circuit board. The improved process allows the electrical leads of the power packages to move freely in lead holes in the printed circuit board as intimate planar surface to planar surface contact between the heat sink and the power packages is achieved, thereby eliminating or at least substantially reducing lead bending that occurs in conventional processes wherein attachment of the heat sink to the power packages occurs after the leads of the power packages have been soldered to the printed circuit board.
Abstract:
Flexible circuitry is populated with integrated circuitry disposed along one or both of its major sides. Contacts distributed along the flexible circuitry provide connection between the module and an application environment. The circuit-populated flexible circuitry is disposed about an edge of a rigid substrate thus placing the integrated circuitry on one or both sides of the substrate with one or two layers of integrated circuitry on one or both sides of the substrate. The substrate form is preferably devised from thermally conductive materials and includes a high thermal conductivity core or area that is disposed proximal to higher thermal energy devices such as an AMB when the flex circuit is brought about the substrate. Other variations include thermally-conductive clips that grasp respective ICs on opposite sides of the module to further shunt heat from the ICs. Preferred extensions from the substrate body or substrate core encourage reduced thermal variations amongst the integrated circuits of the module.
Abstract:
A method and apparatus for making a package having improved heat conduction characteristics and high frequency response. A relatively thick package substrate, such as copper, has a wiring layer bonded to one face, leaving the opposite face exposed, for example, to be a surface for connection to a heat sink. One or more chips are bonded to the wiring layer, and an array of connectors, such as solder balls are provided around the periphery of the chip(s) for connection to a printed circuit board. In some embodiments, the printed circuit board has a hole that the chip(s) extend into to allow smaller external-connection solder balls. In some embodiments, a second heat sink is connected to the back of the chip through the PCB hole.