Abstract:
The invention provides a method of redistributing magnetically responsive beads in a droplet. The method may include conducting on a droplet operations surface one or more droplet operations using the droplet without removing the magnetically responsive beads from the region of the magnetic field. The droplet operations may in some cases be electrode-mediated. The droplet operations may redistribute and/or circulate the magnetically responsive beads within the droplet. In some cases, the droplet may include a sample droplet may include a target analyte. The redistributing of the magnetically responsive beads may cause target analyte to bind to the magnetically responsive beads. In some cases, the droplet may include unbound substances in a wash buffer. The redistributing of the magnetically responsive beads causes unbound substances to be freed from interstices of an aggregated set or subset of the magnetically responsive beads.
Abstract:
The invention provides a droplet actuator designed for performing electroporation on cells in droplets. The invention also provides method and systems for performing electroporation on cells in droplets on a droplet actuator.
Abstract:
Droplet actuators that include molecular barrier coatings are provided. The molecular barrier coating may be provided atop the conductive layer of the top substrate, atop the droplet operations electrodes of the bottom substrate, or both. Where the conductive layer of the top substrate and/or the droplet operations electrodes of the bottom substrate are formed of an electrically conductive organic polymer, such as poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), the molecular barrier coating helps to immobilize the contents of the PEDOT:PSS layer. Further, the molecular barrier coating reduces, preferably entirely eliminates, moisture from seeping into the electrically conducting organic polymer. Methods of conducting droplet operations using the disclosed droplet actuators are also provided.
Abstract:
During droplet operations in a droplet actuator, bubbles often form in the filler fluid in the droplet operations gap and interrupt droplet operations. The present invention provides methods and systems for performing droplet operations on a droplet in a droplet actuator comprising maintaining substantially consistent contact between the droplet and an electrical ground while conducting multiple droplet operations on the droplet in the droplet operations gap and/or reducing the accumulation of electrical charges in the droplet operations gap during multiple droplet operations. The methods and systems reduce or eliminate bubble formation in the filler fluid of the droplet operations gap, thereby permitting completion of multiple droplet operations without interruption by bubble formation in the filler fluid in the droplet operations gap.
Abstract:
The present invention relates to droplet-based particle sorting. According to one embodiment, a method of providing a droplet comprising a single cell is provided, wherein the method includes providing a droplet comprising a suspension of cells on an electrowetting droplet actuator surrounded by an oil medium, dispensing from the droplet to provide a dispensed droplet, determining whether the dispensed droplet on the electrowetting droplet actuator comprises a single cell, and sorting the dispensed droplet on the electrowetting droplet actuator based on the results of the determining step using electrowetting-mediated droplet operations.
Abstract:
The present invention relates to bead incubating and washing on a droplet actuator. Methods for incubating magnetically responsive beads that are labeled with primary antibody, a sample (i.e., analyte), and secondary reporter antibodies on a magnet, on and off a magnet, and completely off a magnet are provided. Also provided are methods for washing magnetically responsive beads using shape-assisted merging of droplets. Also provided are methods for shape-mediated splitting, transporting, and dispensing of a sample droplet that contains magnetically responsive beads. The apparatuses and methods of the invention provide for rapid time to result and optimum detection of an analyte in an immunoassay.
Abstract:
The invention provides droplet actuators and droplet actuator techniques. Among other things, the droplet actuators and methods are useful for manipulating beads on a droplet actuator, such as conducting droplet operations using bead-containing droplets on a droplet actuator. For example, beads may be manipulated on a droplet actuator in the context of executing a sample preparation protocol and/or an assay protocol. An output of the methods of the invention may be beads prepared for execution of an assay protocol. Another output of the methods of the invention may be results of an assay protocol executed using beads. Among the methods described herein are methods of concentrating beads in droplets, methods of washing beads, methods of suspending beads, methods of separating beads, methods of localizing beads within a droplet, methods of forming emulsions in which droplets include beads, methods of loading beads into a droplet operations gap of a droplet actuator, methods of organizing beads in a monolayer, and methods of capturing, trapping or restraining beads.
Abstract:
During droplet operations in a droplet actuator, bubbles often form in the filler fluid in the droplet operations gap and interrupt droplet operations. The present invention provides methods and systems for performing droplet operations on a droplet in a droplet actuator comprising maintaining substantially consistent contact between the droplet and an electrical ground while conducting multiple droplet operations on the droplet in the droplet operations gap and/or reducing the accumulation of electrical charges in the droplet operations gap during multiple droplet operations. The methods and systems reduce or eliminate bubble formation in the filler fluid of the droplet operations gap, thereby permitting completion of multiple droplet operations without interruption by bubble formation in the filler fluid in the droplet operations gap.
Abstract:
A method of loading a droplet actuator is provided. In one embodiment, the method may include, providing: a droplet actuator loaded with a filler fluid; a reservoir comprising a droplet fluid; and a fluid path extending from the reservoir into the droplet actuator; and forcing filler fluid from one locus in the droplet actuator to another locus in the droplet actuator; or out of the droplet actuator; thereby causing droplet fluid to flow through the fluid path and into the droplet actuator.