Abstract:
In an example, the present invention includes an integrated system on chip device. The device is configured on a single silicon substrate member. In an example, the device has a driver interface provided on the substrate member and coupled to the driver module and configured to be coupled to a silicon photonics device.
Abstract:
In an example, the present invention includes an integrated system on chip device. The device is configured on a single silicon substrate member. The device has a data input/output interface provided on the substrate member. The device has an input/output block provided on the substrate member and coupled to the data input/output interface. The device has a signal processing block provided on the substrate member and coupled to the input/output block. The device has a driver module provided on the substrate member and coupled to the signal processing block. In an example, the device has a driver interface provided on the substrate member and coupled to the driver module and configured to be coupled to a silicon photonics device. The device also has an interface configured to communicate between the silicon photonics device and the control block.
Abstract:
Receiver circuitry is disclosed that can take circuit branches offline to possibly adapt an offset value. In one embodiment, a circuit in a receiver has at least two branches. Each branch includes an adjustor to adjust the branch signal by an offset value. Selection circuitry takes one of the branches offline by selecting the output of that branch as an offline value, and by selecting the output of one or more of the other branches as a data decision value. The selection circuitry changes which branch is taken offline during the operation of the circuit. When a branch is taken offline, an offset value associated with that branch may be updated, if necessary.
Abstract:
The present invention is directed to data communication. More specifically, embodiments of the present invention provide a method for acquiring sampling frequency by sweeping through a predetermined frequency range, performing data sampling at different frequencies within the predetermined frequency range, and determining a target frequency for sampling data based on a maximum early peak frequency and a maximum late peak frequency. There are other embodiments as well.
Abstract:
An integrated optical modulator device. The device can include a driver module coupled to an optical modulator. The optical modulator is characterized by a raised cosine transfer function. This optical modulator can be coupled to a light source and a bias control module, which is configured to apply an off-quadrature bias to the optical modulator. This bias can be accomplished by applying an inverse of the modulator transfer function to the optical modulator in order to minimize a noise variance. This compression function can result in an optimized increased top eye opening for a signal associated with the optical modulator. Furthermore, the optical modulator can be coupled to an EDFA (Erbium Doped Fiber Amplifier) that is coupled to a filter coupled an O/E (Optical-to-Electrical) receiver.
Abstract:
Apparatus to implement several high performance phase interpolators are disclosed. Some embodiments are directed to a full-wave integrating phase interpolation core comprising two pairs of in-phase and quadrature-phase current DACs arranged in a cascode architecture to drive an integrating capacitor and produce an interpolation voltage waveform. The current DACs are biased, weighted, and controlled by in-phase and quadrature-phase input clocks to yield an interpolation waveform that presents a phase value between the phases of the input clocks. Some embodiments deploying the interpolator core use feedback circuitry and reference voltages to adjust the common mode and amplitude of the interpolation voltage waveform to obtain both optimal performance and operation within the interpolator linear region or output compliance range. Both the single-core and dual-core implementations, as well as other implementations of the interpolator core, exhibit high power supply rejection, highly linear interpolation, a wide frequency range, and low cost duty cycle correction.
Abstract:
The present invention is directed to data communication systems and methods. More specifically, embodiments of the present invention provide a communication system that removes reflection signals. A digital data stream is processed through both tentative path and the main path. The tentative path uses a first DFE device and a reflection cancellation circuit to generate a correction signal for removing reflection signal from the digital data stream. A second DFE device removes ISI and other noises from the corrected digital data stream. There are other embodiments as well.
Abstract:
The present invention is directed to data communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using PAM format(s) over optical communication networks. A feedback mechanism is provided for adjusting the transmission power levels. There are other embodiments as well.
Abstract:
Disclosed herein are techniques for implementing data clock synchronization in hybrid memory modules. Embodiments comprise a clock synchronization engine at a command buffer to generate a synchronized data clock having a phase relationship with data signals from a non-volatile memory controller that compensates for various synchronous and/or asynchronous delays to facilitate latching of the data signals at certain DRAM devices (e.g., during data restore operations). Other embodiments comprise a divider to determine the frequency of the synchronized data clock by dividing a local clock signal from the non-volatile memory controller by a selected divider value. Some embodiments comprise a set of synchronization logic that invokes the generation of the synchronized data clock signal responsive to receiving a certain local command and/or frame pulse from the non-volatile memory controller. In other embodiments, certain fixed and/or programmable delay elements can be implemented to compensate for various asynchronous delays.
Abstract:
In an example, the present invention includes an integrated system on chip device. The device is configured on a single silicon substrate member. The device has a data input/output interface provided on the substrate member. The device has an input/output block provided on the substrate member and coupled to the data input/output interface. The device has a signal processing block provided on the substrate member and coupled to the input/output block. The device has a driver module provided on the substrate member and coupled to the signal processing block. In an example, the device has a driver interface provided on the substrate member and coupled to the driver module and configured to be coupled to a silicon photonics device. The device also has an interface configured to communicate between the silicon photonics device and the control block.