摘要:
It is an object to provide a method for producing compound semiconductor particles in which monodisperse compound semiconductor particles can be prepared according to the intended object, clogging with products does not occur due to self-dischargeability, a large pressure is not necessary, and productivity is high. In producing compound semiconductor particles by separating and precipitating, in a fluid, semiconductor raw materials, the fluid is formed into a thin film fluid between two processing surfaces arranged so as to be able to approach to and separate from each other, at least one of which rotates relative to the other, and the semiconductor raw materials are separated and precipitated in the thin film fluid. Further, in producing semiconductor microparticles containing semiconductor elements by reacting a compound containing semiconductor elements, in a fluid, with a reducing agent, the fluid is formed into a thin film fluid between two processing surfaces arranged so as to be able to approach to and separate from each other, at least one of which rotates relative to the other, and the compound containing semiconductor elements is reacted with the reducing agent in the thin film fluid.
摘要:
Low scatter water clear zinc sulfide with reduced metal contamination is prepared by coating a chuck which holds zinc sulfide and machining the zinc sulfide with uncoated particles. An inert foil is cleaned with an acid cleaning method and also cleaning the zinc sulfide. The zinc sulfide is wrapped in the inert foil and then treated by a HIP process to provide a low scatter water-clear zinc sulfide. The low scatter water-clear zinc sulfide may be used in articles such as windows and domes.
摘要:
In a method for manufacturing a nanoparticle, a precursor (e.g., transition metal complex) mixed with polyethylene glycol (PEG) is thermally decomposed. A nanoparticle is formed from the thermal decomposition. PEG is cost effective and less toxic than chemicals that are conventionally used for nanoparticle production, so that costs for manufacturing the nanoparticle may be decreased. Further, PEG may be reused to produce more nanoparticles.
摘要:
The invention concerns a composition comprising a mixture of zinc sulphide (ZnS) and molybdenum sulphide (MoSx), in which the Mo/Zn molar ratio is in the range 0.01 to 1.9. The invention also pertains to a process for its preparation as well as to its application in photocatalysis and more particularly to its application in photocatalysis for the production of dihydrogen from water (H2O) and/or hydrogen sulphide (H2S) and/or any other source of protons in the presence of a source emitting in the ultraviolet and/or visible spectrum.
摘要:
A method for producing aqueous compatible semiconductor nanoparticles includes binding pre-modified ligands to nanoparticles without the need for further post-binding modification to render the nanoparticles aqueous compatible. Nanoparticles modified in this way may exhibit enhanced fluorescence and stability compared to aqueous compatible nanoparticles produced by methods requiring post-binding modification processes.
摘要:
A method of producing a hydrazine-coordinated Cu chalcogenide complex, including: a step (I) in which Cu or Cu2Se and a chalcogen are reacted in dimethylsulfoxide in the presence of hydrazine, a step (II) in which a solution obtained in the step (I) is subjected to concentration and filtration, and a step (III) in which a purifying solvent is added to a solution obtained in the step (II).
摘要:
The present invention provides a method of producing a crystalline metal sulfide nanostructure. The metal is a transitional metal or a Group IV metal. In the method, a porous membrane is placed between a metal precursor solution and a sulfur precursor solution. The metal cations of the metal precursor solution and sulfur ions of the sulfur precursor solution react, thereby producing a crystalline metal sulfide nanostructure.
摘要:
Provided in one embodiment is a method of forming an inorganic nanowire, comprising: providing an elongated organic scaffold; providing a plurality of inorganic nanoparticles attached to the organic scaffold along a length of the organic scaffold; and fusing the nanoparticles attached to the organic scaffold to form an inorganic nanowire.
摘要:
It is an object to provide a method for producing compound semiconductor particles in which monodisperse compound semiconductor particles can be prepared according to the intended object, clogging with products does not occur due to self-dischargeability, a large pressure is not necessary, and productivity is high. In producing compound semiconductor particles by separating and precipitating, in a fluid, semiconductor raw materials, the fluid is formed into a thin film fluid between two processing surfaces arranged so as to be able to approach to and separate from each other, at least one of which rotates relative to the other, and the semiconductor raw materials are separated and precipitated in the thin film fluid. Further, in producing semiconductor microparticles containing semiconductor elements by reacting a compound containing semiconductor elements, in a fluid, with a reducing agent, the fluid is formed into a thin film fluid between two processing surfaces arranged so as to be able to approach to and separate from each other, at least one of which rotates relative to the other, and the compound containing semiconductor elements is reacted with the reducing agent in the thin film fluid.
摘要:
An economic, direct synthetic method for producing water soluble ZnS QDs that are ready for bioconjugation is provided. The method can produce aqueous ZnS QDs with emission wavelengths varying from 400 nm to 700 nm. Highly luminescent metal sulfide (MS) QDs are produced via an aqueous synthesis route. MS QDs are capped with thiol-containing charged molecules in a single step. The resultant MS QDs exhibit the distinctive excitonic photoluminescence desired of QDs and can be fabricated to avoid undesirable broadband emissions at higher wavelengths. The aqueous ZnS QDs are stable in biological fluids over a long period of time. In addition, non-toxic ZnS QDs have been produced with good photoluminescence properties.