Abstract:
An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary diode comprises: a light emitting or absorbing region having a diameter between about 20 and 30 microns and a height between about 2.5 to 7 microns; a first terminal coupled to the light emitting region on a first side, the first terminal having a height between about 1 to 6 microns; and a second terminal coupled to the light emitting region on a second side opposite the first side, the second terminal having a height between about 1 to 6 microns.
Abstract:
The present invention provides an addressable or static electronic apparatus, such as a light emitting display or a power generating apparatus. An exemplary apparatus comprises a substrate having a plurality of cavities; a plurality of first conductors coupled to the substrate and at least partially within the cavities, with the plurality of first conductors having a first and substantially parallel orientation; a plurality of light emitting diodes, photovoltaic diodes or other electronic components coupled to the plurality of first conductors and having a second orientation substantially normal to the first orientation; and a plurality of substantially optically transmissive second conductors coupled to the plurality of diodes and having a third orientation substantially normal to the second orientation and substantially perpendicular to the first orientation. In an exemplary method, the plurality of electronic components in a suspending medium are deposited within the plurality of cavities, and the plurality of electronic components are oriented using an applied field, followed by a bonding of the plurality of electronic components to the plurality of first conductors.
Abstract:
The various embodiments of the invention provide an addressable or a static emissive display comprising a plurality of layers, including a first substrate layer, wherein each succeeding layer is formed by printing or coating the layer over preceding layers. Exemplary substrates include paper, plastic, rubber, fabric, glass, ceramic, or any other insulator or semiconductor. In an exemplary embodiment, the display includes a first conductive layer attached to the substrate and forming a first plurality of conductors; various dielectric layers; an emissive layer; a second, transmissive conductive layer forming a second plurality of conductors; a third conductive layer included in the second plurality of conductors and having a comparatively lower impedance; and optional color and masking layers. Pixels are defined by the corresponding display regions between the first and second plurality of conductors. Various embodiments are addressable, have a substantially flat form factor with a thickness of 1-3 mm, and are also scalable virtually limitlessly, from the size of a mobile telephone display to that of a billboard.
Abstract:
The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes forming at least one first conductor coupled to a base; coupling a plurality of substantially spherical substrate particles to the at least one first conductor; converting the substrate particles into a plurality of substantially spherical diodes; forming at least one second conductor coupled to the substantially spherical diodes; and depositing or attaching a plurality of substantially spherical lenses suspended in a first polymer. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. In various embodiments, the forming, coupling and converting steps are performed by or through a printing process.
Abstract:
An exemplary power regulator apparatus provides power for illumination of a display object, such as a merchandise package or container, which has a light emitting apparatus comprising a secondary inductor and an illumination source. A support structure, such as a point of purchase display, typically contains or supports one or more power regulators and display objects. The power regulator comprises a controller and a primary inductor, and the controller is adapted to provide a voltage or current to the primary inductor to generate a primary inductor voltage. The controller may also comprise a plurality of switches and a memory adapted to store values for switching frequency or switch on-time durations or pulse widths. The illumination source emits visible light when the power regulator is in an on state and when the secondary inductor is within a predetermined distance of the primary inductor.
Abstract:
Thin, flexible substrates have printed components or conductors on them forming planarized circuit layers. One or more of the circuits may be programmable, such as with a patterned printed conductive layer, so that one generic design may be used for many different types of functions. Instead of metal vias communicating vertically between the layers, the generic layers have one or more LEDs and photodiodes that generally face each other and communicate by light pulses. Near field communications may also be used for the vertical communications. This allows the separate layers to be combined in various ways, depending on the desired function of the overall product, without requiring the steps of forming holes, filling the holes with a metal, and then connecting the metal vias together, which may form unreliable connections when the layers are flexed. The input/output signals may also be by light or NFC.
Abstract:
On a flexible substrate is printed LEDs and a driver circuit containing transistors. The LEDs and transistors are printed microscopic devices contained in an ink. The LEDs are printed in groups and connected in parallel, and the transistors are printed in groups and connected in parallel. Other components, such as resistors and an on/off switch, are also printed to form the driver. A battery and other circuit components may also be printed on the substrate. An overlay is provided over the LEDs to create a desired light pattern. The LEDs and driver may be generic, and the overlay customizes the light pattern for a particular application. The transistors in the driver may be interconnected with a trace pattern to drive the LEDs in a customized manner, such as for an insert in a product package for marketing to a consumer.
Abstract:
An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
Abstract:
An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
Abstract:
On a flexible substrate is printed LEDs and a driver circuit containing transistors. The LEDs and transistors are printed microscopic devices contained in an ink. The LEDs are printed in groups and connected in parallel, and the transistors are printed in groups and connected in parallel. Other components, such as resistors and an on/off switch, are also printed to form the driver. A battery and other circuit components may also be printed on the substrate. An overlay is provided over the LEDs to create a desired light pattern. The LEDs and driver may be generic, and the overlay customizes the light pattern for a particular application. The transistors in the driver may be interconnected with a trace pattern to drive the LEDs in a customized manner, such as for an insert in a product package for marketing to a consumer.