Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for multiplexing channel state information and hybrid automatic repeat request-acknowledgement information. Other embodiments may be described and claimed.
Abstract:
Embodiments of providing enhanced interference measurements for CSI feedback are generally described herein. In some embodiments, CSI-IM resources are used by UE to perform interference measurements. The serving cell determines a hopping pattern for varying a position of the determined CSI-IM resources in subframes transmitted to the served UE. The determined CSI-IM resources and the determined CSI-IM resources hopping pattern are transmitted to the served UE. The serving node transmits a zero-power (ZP) CSI-RS. The serving node receives an interference measurement from the served UE based on CSI-IM and ZP CSI-RS provided to the served UE from the serving cell. Collisions between the CSI-IM of the serving node and CSI-IM of the non-serving nodes are minimized by the determined CSI-IM resources hopping pattern.
Abstract:
Technology for a first eNodeB is disclosed. The first eNodeB can decode an uplink-downlink (UL-DL) time-division duplexing (TDD) subframe reconfiguration received from a second eNodeB. The UL-DL TDD subframe reconfiguration can be for the first eNodeB. The first eNodeB can encode the UL-DL TDD subframe reconfiguration received from the second eNodeB for transmission to a plurality of user equipment (UEs).
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for mapping media access control (MAC) protocol data units (PDUs) that are used to transmit scheduling assignment (SA) discovery, and/or device-to-device (D2D) data. Embodiments herein may describe how one or more MAC PDUs may be mapped into a time resource pattern for transmissions (T-RPT). Embodiments herein may further describe examples of how and when a UE may skip subframes in transmissions of the SA and/or data. Additionally, embodiments herein may further describe examples of how a UE may behave if the UE cannot transmit one or more scheduled instances of SA or data. Additionally, embodiments herein may describe resolution of collisions of D2D discovery messages in the time domain. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of a User Equipment (UE) and methods for device-to-device (D2D) communication are generally described herein. In some embodiments, the UE may transmit a scheduling assignment (SA) control message that indicates time transmission intervals (TTIs) to be used for a D2D transmission of a data payload by the UE to a receiving UE during an SA cycle. The UE may transmit the data payload during the TTIs indicated in the SA control message. The TTIs used for the transmission of the data payload may be included in a group of D2D TTIs reserved for D2D transmissions. In some embodiments, a time resource pattern for transmission (T-RPT) may indicate a sequence of TTI indexes for the TTIs used for the transmission of the data payload.
Abstract:
Embodiments of the present disclosure describe apparatuses and methods for signal designs for device-to-device (D2D) subframes. Various embodiments may include a UE with a radio transceiver to communicate with another UE via D2D communications. The UE may further include processing circuitry to generate a cyclic prefix (CP) for a first or second symbol of a D2D subframe at an orthogonal frequency division multiplexing (OFDM) resource block or a single-carrier frequency-division multiple access (SC-FDMA) resource block. Other embodiments may be described and/or claimed.
Abstract:
Technology for mitigating edge effect interference in a Coordinated MultiPoint (CoMP) system having multiple CoMP clusters is disclosed. In an example, a method can include a macro node transmitting a cell range expansion request to user equipments (UEs) within a cell. A CoMP cluster for nodes within the cell that includes UEs operating with the cell range expansion can be generated. Blanked resources between a plurality of macro nodes for the CoMP clusters in the CoMP system can be coordinated using a muting preference including a blanked resource.
Abstract:
Technology for adapting uplink-downlink (UL-DL) time-division duplexing (TDD) subframe configurations in a heterogeneous network (HetNet) is disclosed. One method can include a reference enhanced Node B (eNB) determining a preferred adaptive UL-DL configuration. The eNB can receive node configuration information for at least one neighboring node. The eNB can reconfigure an adaptive UL-DL configuration for at least one of the reference eNB and the at least one neighboring node based on the node configuration information and sounding reference signal (SRS) subframe scheduling of the reference eNB and the at least one neighboring eNB.
Abstract:
Disclosed embodiments may include an apparatus having one or more processors coupled to one or more computer-readable storage media. The one or more processors may be configured to transmit and/or receive channel state information reference signal (CSI-RS) resource configuration information, demodulation reference signals (DM-RS), uplink sounding reference signals (SRS), and power control parameters to support uplink coordinated multi-point (CoMP) operations. Other embodiments may be disclosed.