摘要:
A yellow Light Emitting Diode (LED) with a peak emission wavelength in the range 560-580 nm is disclosed. The LED is grown on one or more III-nitride-based semipolar planes and an active layer of the LED is composed of indium (In) containing single or multi-quantum well structures. The LED quantum wells have a thickness in the range 2-7 nm. A multi-color LED or white LED comprised of at least one semipolar yellow LED is also disclosed.
摘要:
A method of device growth and p-contact processing that produces improved performance for non-polar III-nitride light emitting diodes and laser diodes. Key components using a low defect density substrate or template, thick quantum wells, a low temperature p-type III-nitride growth technique, and a transparent conducting oxide for the electrodes.
摘要:
A key switch device including a key top; a pair of link members connected to the key top and interlocked with each other to guide a vertical motion of the key top; a switch mechanism including a membrane sheet switch capable of opening and closing a contact section of an electrical circuit in accordance with the vertical motion of the key top; a flexible thin film sheet attached to the membrane sheet switch; and a housing attached to the thin film sheet, the housing adapted to connect the link members to the thin film sheet.
摘要:
In a storage system including a host computer, and a disk control device connected to the host computer for communications therewith, and performs control over a disk device that stores therein data requested for writing from the host computer, for data transmission from a host interface section or a disk interface section to a memory section, when the data asked by a transmission source for storage is stored in a transmission destination, the transmission destination is put in a first mode for communications of forwarding a response back to the transmission source. With such a configuration, favorably provided is the storage system that offers a guarantee of reliability with the improved processing capabilities thereof.
摘要:
A method for forming non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices. Non-polar (11 20) a-plane GaN layers are grown on an r-plane (1 102) sapphire substrate using MOCVD. These non-polar (11 20) a-plane GaN layers comprise templates for producing non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices.
摘要:
An (AlInGaN) based semiconductor device, comprising a first layer that is a semipolar or nonpolar nitride (AlInGaN) layer having a lattice constant that is partially or fully relaxed, deposited on a substrate or a template, wherein there are one or more dislocations at a heterointerface between the first layer and the substrate or the template; one or more strain compensated layers on the first layer, for defect reduction and stress engineering in the device, that is lattice matched to a larger lattice constant of the first layer; and one or more nonpolar or semipolar (AlInGaN) device layers on the strain compensated layers.
摘要:
A storage control apparatus according to the present invention includes a plurality of connecting units connected to one or more host computers and one or more hard disk drives as storage media for storing data, one or more non-volatile storage media which are of a different type from the hard disk drives and which store data WRITE requested from the host computer, a plurality of processing units for processing WRITE and READ requests from the host computer by using the hard disk drives or the non-volatile storage media and, a plurality of memory units for storing control information to be by the processing units.
摘要:
A method for improved growth of a semipolar (Al,In,Ga,B)N semiconductor thin film using an intentionally miscut substrate. Specifically, the method comprises intentionally miscutting a substrate, loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
摘要翻译:使用有意识的基板改善半极性(Al,In,Ga,B)N半导体薄膜生长的方法。 具体地说,该方法包括有意地将基板,基板加载到反应器中,在氮气和/或氢气和/或氨气流下加热基板,在加热的基板上沉积In x Ga 1-x N成核层,沉积半极性氮化物 半导体薄膜在InxGa1-xN成核层上,并在氮气过压下冷却衬底。
摘要:
A method of growing non-polar m-plane III-nitride film, such as GaN, AlN, AlGaN or InGaN, wherein the non-polar m-plane III-nitride film is grown on a suitable substrate, such as an m-SiC, m-GaN, LiGaO2 or LiAlO2 substrate, using metalorganic chemical vapor deposition (MOCVD). The method includes performing a solvent clean and acid dip of the substrate to remove oxide from the surface, annealing the substrate, growing a nucleation layer, such as aluminum nitride (AlN), on the annealed substrate, and growing the non-polar m-plane III-nitride film on the nucleation layer using MOCVD.
摘要:
Lateral epitaxial overgrowth of non-polar III-nitride seed layers reduces threading dislocations in the non-polar III-nitride thin films. First, a thin patterned dielectric mask is applied to the seed layer. Second, a selective epitaxial regrowth is performed to achieve a lateral overgrowth based on the patterned mask. Upon regrowth, the non-polar III-nitride films initially grow vertically through openings in the dielectric mask before laterally overgrowing the mask in directions perpendicular to the vertical growth direction. Threading dislocations are reduced in the overgrown regions by (1) the mask blocking the propagation of dislocations vertically into the growing film and (2) the bending of dislocations through the transition from vertical to lateral growth.