Abstract:
The invention relates to an apparatus for irradiating an object, in particular for light-curing a dental object by means of a first radiation, the apparatus comprising at least one radiation source for emitting the first radiation, the apparatus further comprising at least one radiation sensor for measuring at least a second radiation, and the apparatus further comprising a housing. The second radiation is the first radiation reelected by the object.
Abstract:
A detection apparatus for light-emitting diode chip comprising a substrate with the function of photoelectric conversion and a probing device is disclosed. The substrate is designed to bear at least one light-emitting diode chip. The probing device comprises a power supply and at least two conductive elements. The two ends of the conductive elements are respectively electrically connected to the light-emitting diode chip and the power supply to enable the light-emitting diode chip to emit light beams. Some of the light beams are emitted from the light-emitting diode chip toward the substrate such that the light beams emitted by the light-emitting diode chip are converted into an electric signal by the substrate.
Abstract:
An illumination device and method is provided herein for calibrating individual LEDs in the illumination device, so as to obtain a desired luminous flux and a desired chromaticity of the device over changes in drive current, temperature, and over time as the LEDs age. The calibration method may include subjecting the illumination device to a first ambient temperature, successively applying at least three different drive currents to a first LED to produce illumination at three or more different levels of brightness, obtaining a plurality of optical measurements from the illumination produced by the first LED at each of the at least three different drive currents, obtaining a plurality of electrical measurements from the photodetector and storing results of the obtaining steps within the illumination device to calibrate the first LED at the first ambient temperature. The plurality of optical measurements may generally include luminous flux and chromaticity, the plurality of electrical measurements may generally include induced photocurrents and forward voltages, and the calibration method steps may be repeated for each LED included within the illumination device and upon subjecting the illumination device to a second ambient temperature.
Abstract:
A method of manufacturing a light emitting device package includes forming a plurality of light emitting devices by growing a plurality of semiconductor layers on a wafer, and measuring color characteristics of light emitted from each of the plurality of light emitting devices. For each of the plurality of light emitting devices, a type and an amount of wavelength conversion material is determined for color compensating the light emitting device based on a difference between the measured color characteristics and target color characteristics. A wavelength conversion layer is formed on at least two light emitting devices among the plurality of light emitting devices, the wavelength conversion layer having the type and the amount of wavelength conversion material determined for the at least two light emitting devices. The plurality of light emitting devices is then divided into individual light emitting device packages.
Abstract:
An optical property evaluation apparatus includes: a light conversion filter converting light emitted from an LED chip or a bare LED package, which is to be evaluated, into a different wavelength of light, and emitting a specific color of light; and an optical property measurement unit receiving the specific color of light emitted from the light conversion filter and measuring the optical properties of the received light.
Abstract:
The invention relates to an apparatus for irradiating an object, in particular for light-curing a dental object by means of a first radiation, the apparatus comprising at least one radiation source for emitting the first radiation, the apparatus further comprising at least one radiation sensor for measuring at least a second radiation, and the apparatus further comprising a housing. The second radiation is the first radiation reelected by the object.
Abstract:
The invention relates to a method for measuring a light radiation (300) emitted by a light-emitting diode (210). In the method, an end (121) of an optical fibre (120) which is connected to a measuring device (130) is irradiated with the light radiation (300), which is emitted by the light-emitting diode (210), through an optical device (140), so that a portion of the light radiation (300) is coupled into the optical fibre (120) and is guided to the measuring device (130). The optical device (140) causes the light radiation (300) passing through the optical device (140) to be emitted in diffuse form in the direction of the end (121) of the optical fibre (120). The invention also relates to an apparatus (100) for measuring a light radiation (300) emitted by a light-emitting diode (210).
Abstract:
An optical characteristic measuring apparatus includes a hemispheric portion having a reflective surface on its inner wall, and a plane portion arranged to close an opening of the hemispheric portion and having a reflective surface on an inner-wall side of the hemispheric portion. The plane portion includes a first window occupying a range including a substantial center of curvature of the hemispheric portion for attaching a light source to the first window. At least one of the hemispheric portion and the plane portion includes a plurality of second windows arranged in accordance with a predetermined rule for extracting light from inside the hemispheric portion.
Abstract:
An optical characteristic measuring apparatus includes a hemispheric portion having a reflective surface on its inner wall, and a plane portion arranged to close an opening of the hemispheric portion and having a reflective surface on an inner-wall side of the hemispheric portion. The plane portion includes a first window occupying a range including a substantial center of curvature of the hemispheric portion for attaching a light source to the first window. At least one of the hemispheric portion and the plane portion includes a plurality of second windows arranged in accordance with a predetermined rule for extracting light from inside the hemispheric portion.
Abstract:
Embodiments as disclosed herein provide a method and system that characterizes physical properties, such as thickness, uniformity, polarization, and/or sizes and locations of defect (e.g. defect density distribution) of crystalline structures grown on or thin films deposited on a substrate of a solid state light emitting device. The embodiments disclosed herein generally include exciting the light emitting device with an energy source and analyze optical energy emitted by the crystalline structures grown on or the thin films deposited on the substrate.