摘要:
A semiconductor memory device including an NVRAM cell structure, a DRAM cell structure and an SRAM cell structure. The NVRAM cell structure, the DRAM cell structure, and the SRAM cell structure are on the same semiconductor on insulator substrate. An NVRAM cell structure. Processes for forming a memory structure that includes NVRAM, DRAM, and/or SRAM memory structures on one semiconductor on insulator substrate and processes for forming a new NVRAM cell structure. Preferably, the semiconductor-on-insulator substrate is an SOI substrate, a silicon on glass substrate or a silicon on sapphire substrate, as appropriate for a particular application.
摘要:
An apparatus for controlling the ramp-up rate of a charge pump having an output providing an output voltage and an output current. In one embodiment, the apparatus comprises a current bleeder circuit having an input, an output adapted for connection to ground potential and at least one transistor having a gate, source, drain and body and defining at least one current path between the source and drain to form a current path between the input and output. The body is adapted for connection to the charge pump output. The apparatus further comprises a control circuit having an input adapted for connection to the charge pump output and an output connected to the bleeder circuit input. The control circuit provides a voltage potential to the input of the current bleeder circuit to control the gate-to-source voltage of the current bleeder circuit transistor. The flow of current through the current path of the current bleeder path is a function of the magnitude of the charge pump output and the gate-to-source voltage of the bleeder circuit transistor. Other embodiments of the apparatus of the present invention are described herein.
摘要:
A body-coupled gated diode for silicon-on-insulator (SOI) technology is disclosed. The body-coupled gated diode is formed from an SOI field-effect transistor (FET). The body, gate and drain of the SOI FET are tied together, forming the first terminal of the diode. The source of the SOI FET forms the second terminal of the diode. Both NFETs and PFETs may be used to create the diode. An SOI circuit comprising at least one body-coupled gated diode formed from the SOI FET provides electrostatic discharge (ESD) protection and ideal diode characteristics.
摘要翻译:公开了一种用于绝缘体上硅(SOI)技术的体耦合门控二极管。 体耦合门控二极管由SOI场效应晶体管(FET)形成。 SOI FET的主体,栅极和漏极连接在一起,形成二极管的第一个端子。 SOI FET的源极形成二极管的第二端子。 可以使用两个NFET和PFET来产生二极管。 包括由SOI FET形成的至少一个体耦合门控二极管的SOI电路提供静电放电(ESD)保护和理想的二极管特性。
摘要:
High performance on-chip voltage regulator designs are disclosed which have settling times which are fast enough to meet today's microprocessor/microcontroller requirements when they are entering an active mode from a passive mode. A first preferred embodiment provides a circuit in which a single pulse control signal is required to instantly raise Vy when the microprocessor is in the wake-up period. The circuit includes a charge pump, a differential amplifier, and a microprocessor connected to the power supply through a voltage regulating device. A second embodiment provides a circuit to stimulate Vint prior to CPU wake-up. The principle of operation of this embodiment is to stimulate the voltage regulating device prior to CPU wake-up. By stimulating (pulling down) the Vint node, the voltage regulating device will raise Vy and ready the microprocessor to draw a large current.
摘要:
Improved packing density as well as improved performance and manufacturing yield is achieved in an electrically programmable memory by confining floating gate structures between isolation structures covered with a thin nitride layer. The confinement of the floating gate is achieved by planarization, preferably with a self-limiting chemical/mechanical polishing process, to the surface of the nitride layer covering the isolation structures. Gate oxide and control electrode connections can then be formed on a substantially planar surface without compromising the quality of the gate oxide or breakdown voltage the device must withstand for programming. Since severe topology is avoided over which these connections are formed, improved formation of low resistance connections, possibly including metal connections, are possible and allow scaling of transistors of the memory cells to be scaled to sizes not previously possible.
摘要:
Through silicon vias (TSVs) in silicon chips are both programmable and non-programmable. The programmable TSVs may employ metal/insulator/metal structures to switch from an open to shorted condition with programming carried out by complementary circuitry on two adjacent chips in a multi-story chip stack.
摘要:
Systems and methods are disclosed that enable forming semiconductor chip connections. In one embodiment, the semiconductor chip includes a body having a polyhedron shape with a pair of opposing sides; and a solder member extending along a side that extends between the pair of opposing sides of the polyhedron shape.
摘要:
Through silicon vias (TSVs) in silicon chips are both programmable and non-programmable. The programmable TSVs may employ metal/insulator/metal structures to switch from an open to shorted condition with programming carried out by complementary circuitry on two adjacent chips in a multi-story chip stack.
摘要:
Programmable fuse-type through silicon vias (TSVs) in silicon chips are provided with non-programmable TSVs in the same chip. The programmable fuse-type TSVs may employ a region within the TSV structure having sidewall spacers that restrict the cross-sectional conductive path of the TSV adjacent a chip surface contact pad. Application of sufficient current by programming circuitry causes electromigration of metal to create a void in the contact pad and, thus, an open circuit. Programming may be carried out by complementary circuitry on two adjacent chips in a multi-story chip stack.
摘要:
The invention comprises a 3D chip stack with an intervening thermoelectric coupling (TEC) plate. Through silicon vias in the 3D chip stack transfer electronic signals among the chips in the 3D stack, power the TEC plate, as well as distribute heat in the stack from hotter chips to cooler chips.