Abstract:
In providing feedback to an eNB in an LTE network for downlink scheduling and link adaptation, a UE issues a channel state information (CSI) report that includes a channel quality index (CQI). The reported CQI should include all UE receiver processing capabilities, including NAICS (network assisted interference cancellation and suppression) capability to cancel and suppress interference. Described are measures that may be taken to provide more accurate reporting of CSI by a terminal with NAICS capability.
Abstract:
Wireless device, method, and computer readable media are disclosed for determining which channel status information (CSI) report of a user equipment (UE) to drop from a physical uplink control channel (PUCCH) packet. The method may include determining that a first CSI report and a second CSI report are to be sent in the PUCCH, where the first CSI report has a first reporting type and a first CSI sub-frame set, and the second CSI report has a second reporting type and a second CSI sub-frame set. The method may include determining to drop the first CSI report if the first CSI sub-frame set has a second lower priority than the second CSI sub-frame set. The determination to drop may be further based on a CSI processor index, serving cell index, and the CSI report priority.
Abstract:
Embodiments of methods and apparatus for determining and/or quantizing a beamforming matrix are disclosed. In some embodiments, the determining and/or quantizing of the beamforming matrix may include the use of a base codebook and a differential codebook. Additional variants and embodiments are also disclosed.
Abstract:
Techniques of enhanced listen-before-talk (LBT) at an Evolved NodeB (eNB) are discussed. An example apparatus within an eNB implementing such techniques comprises a receiver circuit, processor, and transmitter circuit. The receiver circuit is configured to receive a set of signals over a selected frequency band. The processor is configured to determine a subset of the set via an energy detection metric; determine, for each signal of the subset, whether that signal comprises one of a plurality of Long Term Evolution (LTE) reference signals (RSs); and implement a back-off procedure in response to a determination that at least one signal of the subset does not comprise one of the plurality of LTE RSs. The transmitter is configured to transmit a transmission comprising a first RS of the plurality of LTE RSs in response to a determination that each signal of the subset comprises one of the plurality of LTE RSs.
Abstract:
Techniques for a precoding scheme for wireless communications are described. A method and apparatus may comprise a first device for a communications system to determine a beamforming structure for a closed loop transmit beamforming scheme using channel information, one or more scaling factors and one or more integers to represent a complex vector. The beamforming structure may include a codeword, a codebook and a codeword index. Other embodiments are described and claimed.
Abstract:
Methods and apparatuses for communicating in a wireless network include provision of interfering signal characteristics information to a user equipment to facilitate suppression of an interfering signal present in a downlink signal being received at the user equipment.
Abstract:
Technology for periodic channel state information (CSI) reporting is disclosed. One method can include a user equipment (UE) identifying a configured CSI reporting instance for a secondary cell to report the periodic CSI to a node based on a CSI reporting configuration of the secondary cell. The UE can determine that the configured CSI reporting instance of the secondary cell used to report the periodic CSI does not correspond with an uplink (UL) subframe of a primary cell. The UE can transmit the periodic CSI report for the secondary cell, to the node, using a physical uplink shared channel (PUSCH) on the secondary cell when the periodic CSI reporting instance for the secondary cell does not correspond with the UL subframe of the primary cell and an UL-SCH (Uplink Shared Channel) is available in a subframe that corresponds to the periodic CSI reporting instance of the secondary cell.
Abstract:
Technology for enabling radio resource management (RRM) measurements in coordinated multi-point (CoMP) transmission and reception is disclosed. One method comprises sending, from an evolved node B (eNB) to a user equipment (UE), an information element (IE) containing a list of measurement objects that define configurations of channel state information reference signal (CSI-RS) based RRM measurements. The eNB can analyze the CSI-RS based RRM measurements in a CoMP Resource Management (CRM) Set, wherein each CSI-RS based RRM measurement corresponds to a transmission point in a set of transmission points which may be used for downlink transmissions to the UE. The eNB can select a CoMP Measurement Set based on the CSI-RS based RRM measurements reported by the UE, comprising at least one of the set of transmission points for which fast channel state information (CSI) feedback will be reported to the eNB from the UE.
Abstract:
In embodiments, an eNodeB (eNB) may include a sequence generator to identify an initialization parameter for a pseudo-random sequence. The initialization parameter may have a periodicity greater than one radio frame of a radio signal. The sequence generator may then generated a pseudo-random sequence based at least in part on the initialization parameter, and then generate a reference signal based on the pseudo-random sequence. The eNB may further include a transmitter that is coupled with the sequence generator and is to transmit the reference signal in a subframe of the radio signal.
Abstract:
Embodiments of methods and apparatus for determining and/or quantizing a beamforming matrix are disclosed. In some embodiments, the determining and/or quantizing of the beamforming matrix may include the use of a base codebook and a differential codebook. Additional variants and embodiments are also disclosed.