Electropipettor and compensation means for electrophoretic bias
    161.
    发明授权
    Electropipettor and compensation means for electrophoretic bias 有权
    电泳机和电泳偏倚的补偿手段

    公开(公告)号:US06287520B1

    公开(公告)日:2001-09-11

    申请号:US09488801

    申请日:2000-01-21

    IPC分类号: B01L302

    摘要: The present invention provides for techniques for transporting materials using electrokinetic forces through the channels of a microfluidic system. The subject materials are transported in regions of high ionic concentration, next to spacer material regions of high ionic concentration, which are separated by spacer material regions of low ionic concentration. Such arrangements allow the materials to remain localized for the transport transit time to avoid mixing of the materials. Using these techniques, an electropipettor which is compatible with the microfluidic system is created so that materials can be easily introduced into the microfluidic system. The present invention also compensates for electrophoretic bias as materials are transported through the channels of the microfluidic system by splitting a channel into portions with positive and negative surface charges and a third electrode between the two portions, or by diffusion of the electrophoresing materials after transport along a channel.

    摘要翻译: 本发明提供了使用电动力通过微流体系统的通道输送材料的技术。 主体材料在高离子浓度的区域运输,靠近高离子浓度的间隔物材料区域,其由具有低离子浓度的间隔物材料区域分离。 这种布置允许材料在运输通过时间内保持局部化,以避免混合材料。 使用这些技术,产生与微流体系统相容的电吸移器,使得材料可以容易地引入到微流体系统中。 本发明还补偿电泳偏压,因为材料通过将通道分成具有正表面电荷和负表面电荷的部分,以及两部分之间的第三电极,或者通过在运输之后通过电泳材料的扩散而传输通过微流体系统的通道 一个频道

    Microfluidic devices, systems and methods for performing integrated reactions and separations
    162.
    发明授权
    Microfluidic devices, systems and methods for performing integrated reactions and separations 失效
    用于执行集成反应和分离的微流体装置,系统和方法

    公开(公告)号:US06274089B1

    公开(公告)日:2001-08-14

    申请号:US09093489

    申请日:1998-06-08

    IPC分类号: G01N2726

    摘要: Microfluidic devices for performing integrated reaction and separation operations. The devices include a planar substrate having a first surface with an integrated channel network disposed therein. The reaction region in the integrated microscale channel network has a mixture of at least first and second reactants located therein, wherein the mixture interacts to produce one or more products. The reaction region is configured to maintain contact between the first and second reactants contained within it. The device also includes a separation region in the integrated channel network, where the separation region is configured to separate the first reactant from the product, when the first reactant and product are flowing through the separation region. The conductivity of a fluid in the reaction region is higher than the conductivity of a fluid in the separation region.

    摘要翻译: 用于进行集成反应和分离操作的微流体装置。 这些装置包括具有设置在其中的集成通道网络的第一表面的平面基板。 集成微量通道网络中的反应区域具有位于其中的至少第一和第二反应物的混合物,其中混合物相互作用以产生一种或多种产物。 反应区域被配置为保持包含在其中的第一和第二反应物之间的接触。 该装置还包括在集成通道网络中的分离区域,其中当第一反应物和产物流过分离区域时,分离区域被配置为将第一反应物与产物分离。 反应区域中的流体的电导率高于分离区域中的流体的电导率。

    High throughput microfluidic systems and methods
    163.
    发明授权
    High throughput microfluidic systems and methods 有权
    高通量微流体系统和方法

    公开(公告)号:US6132685A

    公开(公告)日:2000-10-17

    申请号:US132096

    申请日:1998-08-10

    IPC分类号: G01N35/00 G01N35/02

    摘要: The invention provides improved systems, devices, and methods for analyzing a large number of sample compounds contained in standard multiwell microtiter plates or other array structures. The multiwell plates travel along a conveyor system to a test station having a microfluidic device. At the test station, each plate is removed from the conveyor and the wells of the multiwell plate are sequentially aligned with an input port of the microfluidic device. After at least a portion of each sample has been input into the microfluidic channel system, the plate is returned to the conveyor system. Pre and/or post testing stations may be disposed along the conveyor system, and the use of an X-Y-Z robotic arm and novel plate support bracket allows each of the samples in the wells to be input into the microfluidic network through a probe affixed to a microfluidic chip. A clamshell structure having a hinged lid can releasably support the chip while providing and/or accommodating the electrical, optical, structural, and other interface connections between the microfluidic device and the surrounding system.

    摘要翻译: 本发明提供用于分析标准多孔微量滴定板或其它阵列结构中所含的大量样品化合物的改进的系统,装置和方法。 多孔板沿传送系统行进到具有微流体装置的测试台。 在试验台,每个板从输送机上取出,多孔板的孔依次与微流体装置的输入端对准。 在每个样品的至少一部分已经被输入到微流体通道系统中之后,板返回到输送系统。 可以沿输送机系统布置前后测试站,并且使用XYZ机器人臂和新的板支撑支架允许孔中的每个样品通过固定在微流体上的探针输入微流体网络 芯片。 具有铰接盖的蛤壳结构可以可释放地支撑芯片,同时提供和/或容纳微流体装置和周围系统之间的电,光学,结构和其它界面连接。

    Electropipettor and compensation means for electrophoretic bias
    166.
    发明授权
    Electropipettor and compensation means for electrophoretic bias 失效
    电泳机和电泳偏倚的补偿手段

    公开(公告)号:US5880071A

    公开(公告)日:1999-03-09

    申请号:US760446

    申请日:1996-12-06

    摘要: The present invention provides for techniques for transporting materials using electrokinetic forces through the channels of a microfluidic system. The subject materials materials are transported in regions of high ionic concentration, next to spacer material regions of high ionic concentration, which are separated by spacer material regions of low ionic concentration. Such arrangements allow the materials to remain localized for the transport transit time to avoid mixing of the materials. Using these techniques, an electropipettor which is compatible with the microfluidic system is created so that materials can be easily introduced into the microfluidic system. The present invention also compensates for electrophoretic bias as materials are transported through the channels of the microfluidic system by splitting a channel into portions with positive and negative surface charges and a third electrode between the two portions, or by diffusion of the electrophoresing materials after transport along a channel.

    摘要翻译: 本发明提供了使用电动力通过微流体系统的通道输送材料的技术。 主体材料在高离子浓度的区域内运输,靠近高离子浓度的间隔物材料区域,其由具有低离子浓度的间隔物材料区域分离。 这种布置允许材料在运输通过时间内保持局部化,以避免混合材料。 使用这些技术,产生与微流体系统相容的电吸移器,使得材料可以容易地引入到微流体系统中。 本发明还补偿电泳偏压,因为材料通过将通道分成具有正表面电荷和负表面电荷的部分,以及两部分之间的第三电极,或者通过在运输之后电泳材料的扩散而传输通过微流体系统的通道 一个频道