Abstract:
A printed circuit board assembly having a printed circuit board with at least one footprint for attaching a plug connector, wherein the footprint has three or more coupling points for coupling electrical contacts of the plug connector, and a plug connector attached on the footprint, wthe plug connector has exactly two signal conductors for transmitting a differential signal, wherein the first signal conductor has a first electrical contact coupled at a first coupling point and the second signal conductor has a second electrical contact coupled at a second coupling point, wherein the second coupling point is not one of the coupling points which is directly adjacent to the first coupling point of the footprint.
Abstract:
According to exemplary embodiments, a tapered surface interconnect is formed on a printed circuit board (PCB). A compliant pin of an electrical connector may be coupled to the tapered surface interconnect and soldered thereto. The surface interconnect may be formed by drilling through one or more layers of the PCB. The depth of the surface interconnect may be shorter than a height or a thickness of the PCB. The surface interconnect may have a tapered side wall to allow for a better fit with a tapered compliant pin. The inclination of the side wall of the surface interconnect may be linear or concave. The intersection between the tapered sidewall and the bottom of the surface interconnect may be rounded to minimize pin insertion issues and may allow for easier solder flux evacuation. The compliant pin may be soldered into place upon being coupled to the tapered surface interconnect.
Abstract:
A printed circuit board (PCB) assembly includes a printed circuit board and first and second electrical terminals mounted thereto. The first electrical terminal comprises a body having a first end and a second end, a mounting member extending outwardly from the first end configured for insertion into an aperture formed in the PCB, shoulders defined adjacent the mounting member, and a first insertion tab extending outwardly from the body at the first end thereof. The second electrical terminal is mounted adjacent the first electrical terminal and comprises a body having a first end and a second end, a mounting portion extending outwardly from the first end configured for insertion into an aperture formed in the PCB, shoulders defined adjacent the mounting portion, and a second insertion tab extending outwardly from the body at the first end thereof. The first insertion tab and the second insertion tab are axially spaced apart.
Abstract:
A method for solderless electrical press-fit contacting of electrically conductive press-fit pins in circuit boards include: providing a circuit board having a thickness, at least one electrical conductor path, and a contacting opening guided perpendicularly through the circuit board and having a metallized inner wall; providing an electrically conductive press-fit pin having a longitudinal axis and having a press-fit region suitable for press-fitting into the contacting opening and having a substantially round cross section; and press-fitting the press-fit pin into the contacting opening by applying onto the press-fit pin a force acting along the longitudinal axis of the press-fit pin, press-fitting being assisted by the application of ultrasound acting on the press-fit pin.
Abstract:
An improved passive electronic stacked component is described. The component has a stack of individual electronic capacitors and a first lead attached to a first side of the stack. A second lead is attached to a second side of the stack. A foot is attached to the first lead and extends inward towards the second lead. A stability pin is attached to one of the foot or the first lead.
Abstract:
The invention relates to a PCB connector for fastening a first printed circuit board on a second printed circuit board. The PCB connector may have a longitudinal base body with a clamping and fastening device for tool-free fastening of the PCB connector on a printed circuit board. The clamping and fastening device has a put-through body and a spring body which is formed extendable upon putting-through the put-through body through the land. The base body is thus pressed against the printed circuit board by the spring body.