Abstract:
The present invention relates generally to semiconductor structures and methods of manufacture and, more particularly, to the temporary bonding of a semiconductor wafer to handler wafer during processing. The semiconductor wafer may be temporarily bonded to the handler wafer by forming a sacrificial layer on a surface of a handler wafer, forming a first dielectric layer on a surface of the sacrificial layer, forming a second dielectric layer on a surface of a semiconductor wafer, and directly bonding the first dielectric layer and the second dielectric layer to form a bonding layer. After the semiconductor wafer is processed, it may be removed from the handler wafer along with the bonding layer by degrading the sacrificial layer with infrared radiation transmitted through the handler wafer.
Abstract:
Methods for forming semiconductor devices. Methods for forming fin structures include forming first sidewalls around a first set of mandrels. The first set of mandrels is removed and second sidewalls are formed around the first sidewalls and a second set of mandrels. The first sidewalls and the second set of mandrels are removed and an underlying layer around the second sidewalls is etched.
Abstract:
A semiconductor substrate may be formed by providing an providing a semiconductor-on-insulator (SOI) substrate including a base semiconductor layer, a buried insulator layer above the base semiconductor layer, and a SOI layer comprising a first semiconductor material above the buried insulator layer; forming an isolation region in the SOI layer isolating a first portion of the SOI layer from a second portion of the SOI layer; removing the second portion of the SOI layer to expose a portion of the buried insulator layer; forming a hole in the exposed portion of the buried insulator layer to expose a portion of the base semiconductor layer; and forming a semiconductor layer made of a second semiconductor material on the exposed portion of the base semiconductor layer, so that the replacement semiconductor layer covers the exposed region of the buried insulator layer.
Abstract:
Embodiments of the present invention provide a method for epitaxially growing a FinFET. One method may include providing a semiconductor substrate including an insulator and an underlayer; forming a channel layer on the semiconductor substrate using epitaxial growth; etching a recess into the channel layer and epitaxially regrowing a portion on the channel layer; etching the channel layer and the underlayer to form fins; forming a gate structure and a set of spacers; etching a source drain region into the channel layer; and forming a source drain material in the source drain region.
Abstract:
A method for manufacturing a fin field-effect transistor (FinFET) device comprises forming a plurality of fins on a substrate, epitaxially growing a sacrificial epitaxy region between the fins, stopping growth of the sacrificial epitaxy region at a beginning of merging of epitaxial shapes between neighboring fins, and forming a dielectric layer on the substrate including the fins and the sacrificial epitaxy region, wherein a portion of the dielectric layer is positioned between the sacrificial epitaxy region extending from fins of adjacent transistors.
Abstract:
An illustrative method includes forming a FinFET device above structure comprising a semiconductor substrate, a first epi semiconductor material and a second epi semiconductor material that includes forming an initial fin structure that comprises portions of the semiconductor substrate, the first epi material and the second epi material, recessing a layer of insulating material such that a portion, but not all, of the second epi material portion of the initial fin structure is exposed so as to define a final fin structure, forming a gate structure above and around the final fin structure, removing the first epi material of the initial fin structure and thereby define an under-fin cavity under the final fin structure and substantially filling the under-fin cavity with a stressed material.
Abstract:
Methods and semiconductor structures formed from the methods are provided which facilitate fabricating semiconductor fin structures. The methods include, for example: providing a wafer with at least one semiconductor fin extending above a substrate; transforming a portion of the semiconductor fin(s) into an isolation layer, the isolation layer separating a semiconductor layer of the semiconductor fin(s) from the substrate; and proceeding with forming a fin device(s) of a first architectural type in a first fin region of the semiconductor fin(s), and a fin device(s) of a second architectural type in a second fin region of the semiconductor fin(s), where the first architectural type and the second architectural type are different fin device architectures.
Abstract:
A semiconductor structure is provided that has semiconductor fins having variable heights without any undue topography. The semiconductor structure includes a semiconductor substrate having a first semiconductor surface and a second semiconductor surface, wherein the first semiconductor surface is vertically offset and located above the second semiconductor surface. An oxide region is located directly on the first semiconductor surface and/or the second semiconductor surface. A first set of first semiconductor fins having a first height is located above the first semiconductor surface of the semiconductor substrate. A second set of second semiconductor fins having a second height is located above the second semiconductor surface, wherein the second height is different than the first height and wherein each first semiconductor fin and each second semiconductor fin have topmost surfaces which are coplanar with each other.
Abstract:
A device includes first and second fins defined in a semiconductor substrate and a raised isolation post structure positioned between the first and second fins, wherein an upper surface of the raised isolation post structure is at a level that is approximately equal to or greater than a level corresponding to an upper surface of each of the first and second fins. A first space is defined by a sidewall of the first fin and a first sidewall of the raised isolation post structure, a second space is defined by a sidewall of the second fin and a second sidewall of the raised isolation post structure, and a gate structure is positioned around a portion of each of the first and second fins and around a portion of the raised isolation post structure, wherein at least portions of the gate structure are positioned in the first and second spaces.
Abstract:
An e-fuse is provided in one area of a semiconductor substrate. The E-fuse includes a vertical stack of from, bottom to top, base metal semiconductor alloy portion, a first metal semiconductor alloy portion, a second metal semiconductor portion, a third metal semiconductor alloy portion and a fourth metal semiconductor alloy portion, wherein the first metal semiconductor alloy portion and the third metal semiconductor portion have outer edges that are vertically offset and do not extend beyond vertical edges of the second metal semiconductor alloy portion and the fourth metal semiconductor alloy portion.