Abstract:
A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
Abstract:
A monolithic photonic integrated circuit (PIC) chip where the active waveguide cores of the modulated sources of the PIC are multiple quantum wells (MQWs) and the passive waveguide cores of an optical combiner are a bulk layer or material. The cores of the waveguide cores may be a quaternary such as InGaAsP or InAlGaAs.
Abstract:
An optical transport network comprises a monolithic transmitter photonic integrated circuit (TxPIC) InP-based chip and a monolithic receiver photonic integrated circuit (RxPIC) InP-based chip.
Abstract:
A method and apparatus operates an array of laser sources as an integrated array on a single substrate or as integrated in an optical transmitter photonic integrated circuit (TxPIC) maintaining the emission wavelengths of such integrated laser sources at their targeted emission wavelengths or at least to more approximate their desired respective emission wavelengths. Wavelength changing elements may accompany the laser sources to bring about the change in their operational or emission wavelength to be corrected to or toward the desired or target emission wavelength. The wavelength changing elements may be comprise of temperature changing elements, current and voltage changing elements or bandgap changing elements. Identification tags in the form of low frequency tones may be applied relative to respective laser source outputs with a different frequency assigned to each laser source so that each laser can be specifically identified in a feedback control for providing correction signals to the wavelength changing elements to correct for the emission wavelength of respective laser sources.
Abstract:
An optical-to-electrical-to-optical converter comprises a monolithic receiver photonic integrated circuit (RxPIC) InP-based chip comprising an optical waveguide formed in the chip from a chip input to receive a first multiplexed channel signal from an optical link and provide them to an arrayed waveguide grating (AWG) which demultiplexes the multiplexed channel signals and provides a plurality of electrical channel signals to an electronic regenerator. The regenerator regenerates the electrical channel signals to an original signal waveform and provides the reformed electrical signals to a monolithic transmitter photonic integrated circuit (TxPIC) InP-based chip having an array of modulated sources formed in the chip that are coupled as inputs to an arrayed waveguide grating (AWG). The TxPIC modulates the reformed electrical signals to form a plurality of optical channel sign which are combined to form a second first multiplexed channel signal for transmission on an optical link.
Abstract:
A method of operating an array of integrated laser sources formed as an integrated array on a single substrate in a photonic integrated circuit (PIC) where the laser sources are designed for operation at different targeted emission wavelengths which, in toto, at least approximate a grid of spatial emission wavelengths. A first wavelength tuning element is associated with each laser source and is adjusted over time so that each laser source maintains its targeted emission wavelength. As an alternative, the drive current to each laser source may be initially set so that each laser source operates at its targeted emission wavelength. Thereafter, adjustments to retune the laser sources to their targeted emission wavelengths are accomplished by the first wavelength tuning elements. The outputs of the laser sources may be combined via an optical combiner to produce a single combined output from the PIC. A second wavelength tuning element is associated with the optical combiner so that the passband response or wavelength grid of the optical combiner may be also monitored and adjusted to better approximate the wavelength grid of the laser sources.
Abstract:
A method and apparatus operates an array of laser sources as an integrated array on a single substrate or as integrated in an optical transmitter photonic integrated circuit (TxPIC) maintaining the emission wavelengths of such integrated laser sources at their targeted emission wavelengths or at least to more approximate their desired respective emission wavelengths. Wavelength changing elements may accompany the laser sources to bring about the change in their operational or emission wavelength to be corrected to or toward the desired or target emission wavelength. The wavelength changing elements may be comprise of temperature changing elements, current and voltage changing elements or bandgap changing elements. Identification tags in the form of low frequency tones may be applied relative to respective laser source outputs with a different frequency assigned to each laser source so that each laser can be specifically identified in a feedback control for providing correction signals to the wavelength changing elements to correct for the emission wavelength of respective laser sources.
Abstract:
Methods for the fabrication of TS LED chips with improved light extraction and optics, particularly increased top surface emission, and the TS LEDs so fabricated are described. Non-absorbing DBRs within the chip permit the fabrication of the LEDs. The transparent DBRs redirect light away from absorbing regions such as contacts within the chip, increasing the light extraction efficiency of the LED. The non-absorbing DBRs can also redirect light toward the top surface of the chip, improving the amount of top surface emission and the on-axis intensity of the packaged LED. These benefits are accomplished with optically non-absorbing layers, maintaining the advantages of a TS LED, which advantages include .about.6 light escape cones, and improved multiple pass light extraction.
Abstract:
This method relates to the fabrication of semiconductor light-emitting devices having at least one ordered textured interface. Controlled interface texturing with an ordered pattern is provided on any or all interfaces of such a device to enhance light extraction from these interfaces and thus improve the performance of the device. Ordered interface texturing offers an improvement in light extraction by increasing the transmission of total optical power from the device into the ambient. This improvement is possible because ordered interface texturing can provide: 1) a reduction in Fresnel losses at the interface between the device and the ambient and, 2) a change or increase in the angular bandwidth of light which may transmit power into the ambient. This latter effect may be thought of a change or increase in the escape cone at an interface. Both effects can result in an overall increase in total light extraction efficiency for the LED.
Abstract:
A coolerless photonic integrated circuit (PIC), such as a semiconductor electro-absorption modulator/laser (EML) or a coolerless optical transmitter photonic integrated circuit (TxPIC), may be operated over a wide temperature range at temperatures higher then room temperature without the need for ambient cooling or hermetic packaging. Since there is large scale integration of N optical transmission signal WDM channels on a TxPIC chip, a new DWDM system approach with novel sensing schemes and adaptive algorithms provides intelligent control of the PIC to optimize its performance and to allow optical transmitter and receiver modules in DWDM systems to operate uncooled. Moreover, the wavelength grid of the on-chip channel laser sources may thermally float within a WDM wavelength band where the individual emission wavelengths of the laser sources are not fixed to wavelength peaks along a standardized wavelength grid but rather may move about with changes in ambient temperature. However, control is maintained such that the channel spectral spacing between channels across multiple signal channels, whether such spacing is periodic or aperiodic, between adjacent laser sources in the thermally floating wavelength grid are maintained in a fixed relationship. Means are then provided at an optical receiver to discover and lock onto floating wavelength grid of transmitted WDM signals and thereafter demultiplex the transmitted WDM signals for OE conversion.