Abstract:
An array of memory cells configured to store at least one bit per one F2 includes substantially vertical structures providing an electronic memory function spaced apart a distance equal to one half of a minimum pitch of the array. The structures providing the electronic memory function are configured to store more than one bit per gate. The array also includes electrical contacts to the memory cells including the substantially vertical structures. The cells can be programmed to have one of a number of charge levels trapped in the gate insulator adjacent to the first source/drain region such that the channel region has a first voltage threshold region (Vt1) and a second voltage threshold region (Vt2) and such that the programmed cell operates at reduced drain source current.
Abstract:
Methods of forming insulating materials between conductive elements include forming a material adjacent a conductive electrical component comprising: partially vaporizing a mass to form a matrix adjacent the conductive electrical component, the matrix having at least one void within it. Other methods include forming a material between a pair of conductive electrical components comprising: forming a pair of conductive electrical components within a mass and separated by an expanse of the mass; forming at least one support member within the expanse of the mass, the support member not comprising a conductive interconnect; and vaporizing the expanse of the mass to a degree effective to form at least one void between the support member and each of the pair of conductive electrical components. Some embodiments include an insulating material adjacent a conductive electrical component, such material comprising a matrix and at least one void within the matrix.
Abstract:
A method for forming a flash memory device having a local interconnect connecting source regions of a plurality of transistors within a sector allows for a highly selective wet etch of a dielectric region overlying the source region. An embodiment of the method comprises the use of an etch-resistant layer covering various features such as any gate oxide remaining over the source region, spacers along sidewalls of the transistor stacks, and a capping layer of the transistor. An in-process semiconductor device resulting from the inventive method is also disclosed.
Abstract:
A method of forming a corrugated capacitor on a semiconductor component. The method of forming the corrugated capacitor comprises a series of depositing alternating layers of doped silicon glass having different etch rates on a semiconductor component, covering the alternating layers with an etch-resistant material, and etching the alternating layers, thereby forming a capacitor structure having corrugated sides.
Abstract:
A removable oxide spacer is used to reduce the size of a contact opening in a memory cell between polysilicon word lines below a lithographic minimum. The removable spacer is deposited before the buried contact patterning and etching. Since word lines diverge at a cell location, the removable spacer retains a lesser thickness over the divergent area contact opening and a greater thickness elsewhere between word lines due to the more narrow gap therebetween and the spacer being deposited such that it fills the gap. The removable spacer reduces the buried contact size since the actual self-aligned contact area is defined by the spacer sidewall. The removable spacer is formed of materials having higher etching selectivity relative to materials forming underlying structures. Etching of the spacer creates a buried contact opening smaller than a lithographic minimum because silicon oxide surrounding the buried contact area is protected by the removable spacer. The removable spacer is removed after the resist strip, leaving a sublithographic buried contact opening.
Abstract:
A non-volatile memory is described which includes an array of memory cells arranged in rows and columns. A split source line architecture is implemented and uses isolation transistors located throughout the memory array to couple selected memory cells in response to an active row line signal. The isolation transistors can be provided for each row of the memory array or for a pre-determined number of memory cells, such as 8, 16 or 32. By providing a split source line and isolation transistors, read errors caused by over erased memory cells can be eliminated with minimal increase in die area.
Abstract:
A removable oxide spacer is used to reduce the size of a contact opening in a memory cell between polysilicon word lines below a lithographic minimum. The removable spacer is deposited before the buried contact patterning and etching. Since word lines diverge at a cell location, the removable spacer retains a lesser thickness over the divergent area contact opening and a greater thickness elsewhere between word lines due to the more narrow gap therebetween and the spacer being deposited such that it fills the gap. The removable spacer reduces the buried contact size since the actual self-aligned contact area is defined by the spacer sidewall. The removable spacer is formed of materials having higher etching selectivity relative to materials forming underlying structures. Etching of the spacer creates a buried contact opening smaller than a lithographic minimum because silicon oxide surrounding the buried contact area is protected by the removable spacer. The removable spacer is removed after the resist strip, leaving a sublithographic buried contact opening.
Abstract:
The apparatuses and methods described herein may operate to measure a voltage difference between a selected access line and a selected sense line associated with a selected cell of a plurality of memory cells of a memory array. The voltage difference may be compared with a reference voltage specified for a memory operation. A selection voltage(s) applied to the selected cell for the memory operation may be adjusted responsive to the comparison, such as to dynamically compensate for parasitic voltage drop.
Abstract:
The present disclosure includes methods and apparatuses that include resistive memory. A number of embodiments include a first memory cell coupled to a data line and including a first resistive storage element and a first access device, a second memory cell coupled to the data line and including a second resistive storage element and a second access device, an isolation device formed between the first access device and the second access device, a first select line coupled to the first resistive storage element, and a second select line coupled to the second resistive storage element, wherein the second select line is separate from the first select line.
Abstract:
Resistive memory cells including an integrated select device and storage element and methods of forming the same are described herein. As an example, a resistive memory cell can include a select device structure including a Schottky interface, and a storage element integrated with the select device structure such that an electrode corresponding to the Schottky interface serves as a first electrode of the storage element. The storage element can include a storage material formed between the first electrode and a second electrode.