Abstract:
A switching element includes: a first electrode; a second electrode; and a silicon-containing chalconitride layer between the first electrode and the second electrode. A switching device includes: a threshold switch material layer between a first electrode and a second electrode. The threshold switch material layer includes a cationic metal element, a chalcogen element, a silicon element and a nitrogen element. A memory device include: a plurality of first wirings arranged in parallel with each other; a plurality of second wirings crossing the first wirings, and arranged in parallel with each other; and a memory cell formed at each intersection of the plurality of first wirings and the plurality of second wirings. The memory cell includes a laminate having a silicon-containing chalconitride layer, an intermediate electrode, and a memory layer.
Abstract:
A power management chip and a power management device including the power management chip. The power management chip includes at least one power switch and a driver unit for generating a driving signal for driving the at least one power switch, the driver unit including one or more circuit units formed on a same substrate as the at least one power switch.
Abstract:
Image sensors and methods of operating the same. An image sensor includes a pixel array including a plurality of pixels. Each of the plurality of pixels includes a photo sensor, the voltage-current characteristics of which vary according to energy of incident light, and that generates a sense current determined by the energy of the incident light; a reset unit that is activated to generate a reference current, according to a reset signal for resetting at least one of the plurality of pixels; and a conversion unit that converts the sense current and the reference current into a sense voltage and a reference voltage, respectively.
Abstract:
A method for making a capacitor of a semiconductor memory device capable of providing increased capacitance without degraded resolution, as well as without the removal of any interlayer insulation layers upon formation of a lower electrode for the capacitor, wherein after formation of an access transistor on a semiconductor substrate, a first interlayer insulation layer for planarization of a surface of the semiconductor substrate and a second interlayer insulation layer for formation of the capacitor lower electrode are formed. After formation of an opening for exposing a part of an impurity diffusion region of the access transistor by etching a part of the first and second interlayer insulating layers, a spacer is formed within the opening. Further, after deposition of a conductive layer for the capacitor lower electrode onto a surface of the substrate, a planarization process is carried out until a part of the upper surface of the spacer is exposed. Finally, after removal of the exposed spacer, the dielectric layer and a conductive layer for the upper electrode of the capacitor are formed in sequence. The method does not require any additional insulation layer evaporation process, since the interlayer insulation layer for formation of the reverse storage electrode could be used for formation of a gate contact of a logic region, without removal. Consequently, simplification of fabrication process for a capacitor is achieved.
Abstract:
A deposition rate of a dielectric material is varied with the electrical polarity of an underlying layer to obtain excellent deposition and planarization characteristics. A conductive layer and the underlying dielectric are surface-treated to have different electrical polarities so that the dielectric is formed by using the difference of deposition rates of the dielectric material between that on the conductive layer and that on the underlying dielectric. A CVD apparatus having a DC power source connected between a susceptor and a gas injection portion thereof is provided. The deposition and planarization can be performed at low temperatures and are simplified in process.
Abstract:
Image sensors and methods of operating the same. An image sensor includes a pixel array including a plurality of pixels. Each of the plurality of pixels includes a photo sensor, the voltage-current characteristics of which vary according to energy of incident light, and that generates a sense current determined by the energy of the incident light; a reset unit that is activated to generate a reference current, according to a reset signal for resetting at least one of the plurality of pixels; and a conversion unit that converts the sense current and the reference current into a sense voltage and a reference voltage, respectively.
Abstract:
A method of manufacturing a High Electron Mobility Transistor (HEMT) may include forming first and second material layers having different lattice constants on a substrate, forming a source, a drain, and a gate on the second material layer, and changing the second material layer between the gate and the drain into a different material layer, or changing a thickness of the second material layer, or forming a p-type semiconductor layer on the second material layer. The change in the second material layer may occur in an entire region of the second material layer between the gate and the drain, or only in a partial region of the second material layer adjacent to the gate. The p-type semiconductor layer may be formed on an entire top surface of the second material layer between the gate and the drain, or only on a partial region of the top surface adjacent to the gate.
Abstract:
A storage node of a magnetic memory device includes: a lower magnetic layer, a tunnel barrier layer formed on the lower magnetic layer, and a free magnetic layer formed on the tunnel barrier. The free magnetic layer has a magnetization direction that is switchable in response to a spin current. The free magnetic layer has a cap structure surrounding at least one material layer on which the free magnetic layer is formed.
Abstract:
A method of forming a field effect transistor includes forming a vertical channel protruding from a substrate including a source/drain region junction between the vertical channel and the substrate, and forming an insulating layer extending on a side wall of the vertical channel toward the substrate to beyond the source/drain region junction. The method may also include forming a nitride layer extending on the side wall away from the substrate to beyond the insulating layer, forming a second insulating layer extending on the side wall that is separated from the channel by the nitride layer, and forming a gate electrode extending on the side wall toward the substrate to beyond the source/drain region junction.
Abstract:
An oxidation treatment apparatus for oxidizing a surface of a substrate includes a process chamber for performing a process, a boat supporting the substrate and disposed in the process chamber during the process and a first ozone supply unit supplying ozone to the process chamber. The first ozone supply unit includes an ozone generator disposed at an exterior of the process chamber and an ozone spray nozzle disposed in the process chamber to spray the ozone supplied from the ozone generator into the process chamber.