Abstract:
An electronic device structure comprises a substrate layer of semi-insulating AlxGayInzN, a first layer comprising AlxGayInzN, a second layer comprising Alx′Gay′Inz′N, and at least one conductive terminal disposed in or on any of the foregoing layers, with the first and second layers being adapted to form a two dimensional electron gas is provided. A thin (
Abstract translation:电子器件结构包括半绝缘的衬底层,包括Al x的第一层, 在N z中,第二层包括Al x Si x Ga y In, SUB> z'N,以及至少一个导电端子,其设置在上述层中的任一层中或之中,其中第一层和第二层适于形成二维电子气。 在天然半绝缘III-V衬底上同时外延生长薄(<1000nm)III-氮化物层,以提供改进的电子器件(例如,HEMT)结构。
Abstract:
A III-V nitride, e.g., GaN, substrate including a (0001) surface offcut from the direction predominantly toward a direction selected from the group consisting of and directions, at an offcut angle in a range that is from about 0.2 to about 10 degrees, wherein the surface has a RMS roughness measured by 50×50 μm2 AFM scan that is less than 1 nm, and a dislocation density that is less than 3E6 cm−2. The substrate may be formed by offcut slicing of a corresponding boule or wafer blank, by offcut lapping or growth of the substrate body on a corresponding vicinal heteroepitaxial substrate, e.g., of offcut sapphire. The substrate is usefully employed for homoepitaxial deposition in the fabrication of III-V nitride-based microelectronic and opto-electronic devices.
Abstract:
Large area, uniformly low dislocation density single crystal III-V nitride material, e.g., gallium nitride having a large area of greater than 15 cm2, a thickness of at least 1 mm, an average dislocation density not exceeding 5E5 cm−2, and a dislocation density standard deviation ratio of less than 25%. Such material can be formed on a substrate by a process including (i) a first phase of growing the III-V nitride material on the substrate under pitted growth conditions, e.g., forming pits over at least 50% of the growth surface of the III-V nitride material, wherein the pit density on the growth surface is at least 102 pits/cm2 of the growth surface, and (ii) a second phase of growing the III-V nitride material under pit-filling conditions.
Abstract:
A microelectronic or microelectromechanical device, including a substrate and a carbon microfiber formed thereon, which may be employed as an electrical connector for the device or as a selectively translational component of a microelectromechanical (MEMS) device.
Abstract:
Electron field emission devices (cold cathodes), vacuum microelectronic devices and field emission displays which incorporate cold cathodes and methods of making and using same. More specifically, cold cathode devices comprising electron emitting structures grown directly onto a substrate material. The invention also relates to patterned precursor substrates for use in fabricating field emission devices and methods of making same and also to catalytically growing other electronic structures, such as films, cones, cylinders, pyramids or the like, directly onto substrates.
Abstract:
A III-V nitride homoepitaxial microelectronic device structure comprising a III-V nitride homoepitaxial epi layer of improved epitaxial quality deposited on a III-V nitride material substrate, e.g., of freestanding character. Various processing techniques are described, including a method of forming a III-V nitride homoepitaxial layer on a corresponding III-V nitride material substrate, by depositing the III-V nitride homoepitaxial layer by a VPE process using Group III source material and nitrogen source material under process conditions including V/III ratio in a range of from about 1 to about 105, nitrogen source material partial pressure in a range of from about 1 to about 103 torr, growth temperature in a range of from about 500 to about 1250 degrees Celsius, and growth rate in a range of from about 0.1 to about 102 microns per hour. The III-V nitride homoepitaxial microelectronic device structures are usefully employed in device applications such as UV LEDs, high electron mobility transistors, and the like.
Abstract:
In a method for making a GaN article, an epitaxial nitride layer is deposited on a single-crystal substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode. A GaN transitional layer is grown on the 3D nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. A bulk GaN layer is grown on the transitional layer by HVPE under the substantially 2D growth mode. A polycrystalline GaN layer is grown on the bulk GaN layer to form a GaN/substrate bi-layer. The GaN/substrate bi-layer may be cooled from the growth temperature to an ambient temperature, wherein GaN material cracks laterally and separates from the substrate, forming a free-standing article.
Abstract translation:在制造GaN制品的方法中,在单晶衬底上沉积外延氮化物层。 通过HVPE在基本上3D生长模式下在外延氮化物层上生长3D成核GaN层。 在将成长模式从基本上3D生长模式改变为基本上2D生长模式的条件下,通过HVPE在3D成核层上生长GaN过渡层。 在基本上2D生长模式下,通过HVPE在过渡层上生长体GaN层。 在体GaN层上生长多晶GaN层以形成GaN /衬底双层。 GaN /衬底双层可以从生长温度冷却到环境温度,其中GaN材料横向裂开并与衬底分离,形成独立制品。
Abstract:
In a method for making a GaN article, an epitaxial nitride layer is deposited on a single-crystal substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode. A GaN transitional layer is grown on the 3D nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. A bulk GaN layer is grown on the transitional layer by HVPE under the substantially 2D growth mode. A polycrystalline GaN layer is grown on the bulk GaN layer to form a GaN/substrate bi-layer. The GaN/substrate bi-layer may be cooled from the growth temperature to an ambient temperature, wherein GaN material cracks laterally and separates from the substrate, forming a free-standing article.
Abstract translation:在制造GaN制品的方法中,在单晶衬底上沉积外延氮化物层。 通过HVPE在基本上3D生长模式下在外延氮化物层上生长3D成核GaN层。 在将成长模式从基本上3D生长模式改变为基本上2D生长模式的条件下,通过HVPE在3D成核层上生长GaN过渡层。 在基本上2D生长模式下,通过HVPE在过渡层上生长体GaN层。 在体GaN层上生长多晶GaN层以形成GaN /衬底双层。 GaN /衬底双层可以从生长温度冷却到环境温度,其中GaN材料横向裂开并与衬底分离,形成独立制品。
Abstract:
A III-V nitride, e.g., GaN, substrate including a (0001) surface offcut from the direction predominantly toward a direction selected from the group consisting of and directions, at an offcut angle in a range that is from about 0.2 to about 10 degrees, wherein the surface has a RMS roughness measured by 50×50 μm2 AFM scan that is less than 1 nm, and a dislocation density that is less than 3E6 cm−2. The substrate may be formed by offcut slicing of a corresponding boule or wafer blank, by offcut lapping or growth of the substrate body on a corresponding vicinal heteroepitaxial substrate, e.g., of offcut sapphire. The substrate is usefully employed for homoepitaxial deposition in the fabrication of III-V nitride-based microelectronic and opto-electronic devices.
Abstract:
Group III (Al, Ga, In)N single crystals, articles and films useful for producing optoelectronic devices (such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors) and electronic devices (such as high electron mobility transistors (HEMTs)) composed of III-V nitride compounds, and methods for fabricating such crystals, articles and films.